ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Перевод дробных чисел из одной позиционной системы счисления в другую Системы счисления Системы счисления - одна из традиционных тем курса информатики, восходящих к программированию ЭВМ первых поколений в машинных кодах. В настоящее время данная тема сохраняет свое значение как весьма типичный случай кодирования информации, а также в связи с широким использованием шестнадцатеричных обозначений в машинно-ориентированных разделах программирования. Знание систем счисления полезно для понимания представления данных в памяти ЭВМ и операций над ними. Системы счисления (особенно по основанию 10) достаточно подробно изучаются в курсах математики и информатики средней общеобразовательной школы. В данном курсе эта тема предполагает повторение уже известных сведений, специализацию в отношении систем счисления по основанию 16, 8 и 2, а также обобщение в плане кодирования информации. Целесообразно проведение семинарского занятия, подготовка рефератов, посвященных истории и значению позиционных систем счисления. Особое внимание следует уделить формированию стабильных навыков чтения и записи чисел в шестнадцатеричной системе. Полезным является и знакомство с различными приемами перевода чисел в системы счисления по основанию 2, 8 и 16, в том числе с помощью калькулятора или компьютера. Перевод целых чисел из одной позиционной системы счисления в другую При переводе целых чисел из десятичной системы счисления в систему с основанием P > 1 обычно используют следующий алгоритм: Если переводится целая часть числа, то она делится на P, после чего запоминается остаток от деления. Полученное частное вновь делится на P, остаток запоминается. Процедура продолжается до тех пор, пока частное не станет меньше основания P. Остатки от деления на P выписываются в порядке, обратном их получению. Пример 1. Перевести десятичное число 173(10) в восьмеричную и шестнадцатеричную системы счисления. а) 173(10)=255(8);  б) 173(10)=AD(16); шестнадцатеричная система P=16 | | | 10 | 13 | |  | | Пример 2. Перевести десятичное число 11(10) в двоичную систему счисления. Иногда более удобно записать алгоритм перевода в форме таблицы. При переводе чисел из системы счисления с основанием P в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и дробной части, начиная с разряда сразу после запятой, слева направо (начальный номер –1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной номеру разряда. Это и есть представление исходного числа в десятичной системе счисления. Пример 3. Перевести данное число в десятичную систему счисления: а) 1000001(2). 1000001(2) = 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = 64 + 1 = 65(10). Замечание. Если в каком-либо разряде стоит нуль, то соответствующее слагаемое можно опускать. б) 1000011111,0101(2). 1000011111,0101(2) = 1 × 29 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 + 1 × 2–2 + 1 × 2–4 = = 512 + 16 + 8 + 4 + 2 + 1 + 0,25 + 0,0625 = 543,3125(10). в) 1216,04(8). 1216,04(8) = 1 × 83 + 2 × 82 + 1 × 81 + 6 × 80 + 4 × 8–2 = 512 + 128 + 8 + 6 + 0,0625 = =654,0625(10). г) 29A,5(16). 29A,5(16) = 2 × 162 + 9 × 161 + 10 × 160 + 5 × 16–1 = 512 + 144 + 10 + 0,3125 = 656,3125(10). Перевод дробных чисел из одной позиционной системы счисления в другую Если переводится дробная часть числа, то она умножается на P, после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после двоичной запятой в порядке их получения. Пример 4. Перевести десятичное число 0,1875(10) в двоичную систему счисления 0,1875(10) = 0,0011(2)  | х 2 | 0, | | 0, | | 0, | | 1, | | 1, | | Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P. Пример 5. Перевести десятичное число 0,94(10) в двоичную (получить пять знаков после запятой в двоичном представлении). 0,94(10) ≈0,11110(2) | х 2 | 0, | | 1, | | 1, | | 1, | | 1, | | 0, | | 0, | | |