МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Основні теореми диференціального числення





ЛЕКЦІЯ 7. ДИФЕРЕНЦІАЛ ФУНКЦІЇ ОДНІЄЇ ЗМІННОЇ. Основні теореми диференціального числення

ПЛАН

1. Означення диференціалу функції

2. Застосування деференціала в наближених обчисленнях

3. Правила знаходження диференціала

4. Основні теореми диференціального числення

 

Означення диференціалу функції

Нехай функція у = f (х) диференційовна на деякому проміжку, тобто для будь-якої точки х з цього проміжку границя існує і дорівнює скінченному числу.

Враховуючи взаємозв’язок змінної величини, що має скінченну границю, і нескінченної малої величини, можемо записати , де — нескінченно мала величина ( при ).

Помноживши всі члени останньої рівності на , дістанемо

. (1)

З виразу (1) випливає, що приріст функції складається із суми двох доданків, з яких перший доданок — так звана головна частина приросту, лінійна відносно (при добуток є нескінченно мала величина першого порядку відносно ). Другий доданок — добуток завжди нескінченно мала величина вищого порядку, ніж .

Означення 1. Добуток називається диференціалом функції у = f (х); його позначають символом dy, тобто

(2)

Знайдемо диференціал функції у = х; для цього випадку , отже, . Таким чином, диференціал незалежної змінної збігається з її приростом . З огляду на це формулу для диференціала (2) можна записати так:

. (3)

Приклад. Знайти диференціал dy функції : 1) при довільних значеннях х та ; 2) при х = 20, = 0,1.

1) ;

2) якщо х = 20, = 0,1, то .

Приклад. Знайти диференціал dy функції .

Оскільки , то за формулою (3) дістанемо

.

Застосування деференціала в наближених обчисленнях

Вираз (2) з урахуванням (3) можна записати так:

. (4)

Якщо , то величина є малою величиною вищого порядку порівняно з dy.

При малих доданком у виразі (4) нехтують і користуються наближеною рівністю , або в розгорнутому вигляді: , звідки

. (5)

Остання наближена рівність тим точніша, чим менше .

Приклад. Обчислити наближено .

Перетворимо вираз, що стоїть під знаком радикала:

, звідки . (6)

При обчисленні введемо функцію , тоді .

Формула (5) у нашому випадку запишеться так:

, де .

Інакше

. (7)

Підставивши (7) у рівність (6), дістанемо

.

Правила знаходження диференціала

Застосовуючи формулу похідної та властивості похідних, дістаємо правила знаходження диференціала:

1. у = с; dy = 0; 3.

2. ; 4. .

Теорема. Форма диференціала не залежить від того, чи є аргумент незалежною змінною або функцією.

Основні теореми диференціального числення

Теорема Ферма. Якщо диференційовна на проміжку
функція досягає найбільшого або найменшого значення у внутрішній точці цього проміжку, то похідна функції в цій точці дорівнює нулю, тобто

Припустимо, для визначеності, що набуває в точці найбільшого значення, тобто для всіх .

За означенням похідної

,

причому ця границя не залежить від того, як наближається до — справа чи зліва.

Розглянемо відношення .

Для всіх х, достатньо близьких до точки , маємо:

Перейдемо в останніх нерівностях до границі при . Дістанемо

.

Аналогічно розглядається випадок, коли функція набуває в точці найменшого значення.

Геометричний зміст теореми Ферма. Геометричний зміст похідної являє собою кутовий коефіцієнт дотичної до кривої . Звідси рівність нулю похідної геометрично озна­чає, що у відповідній точці цієї кривої дотична паралельна осі Ох.



Теорема Ролля. Якщо функція f (х): 1) неперервна на сегменті [a; b]; 2) диференційовна на інтервалі (а; b); 3) на кінцях сегмента набуває рівних між собою значень, тобто f (a) = f (b), то на інтервалі (а; b) існує хоча б одна точка , для якої

Геометричний зміст теореми Ролля.Якщо крайні ординати неперервної кривої у = f (х), яка має в кожній точці дотичну, рівні, то на цій кривій знайдеться принаймні одна точка з абсцисою , в якій дотична паралельна осі Ох (рис. 6).

Рис. 6

Теорема Лагранжа (теорема про скінченні прирости функції).

Якщо функція f (х): 1) неперервна на сегменті [a; b]; 2) диференційовна на інтервалі (а; b), то на інтервалі знайдеться хоча б одна точка , така що

(8)

Геометричний зміст теореми Лагранжа. Запишемо формулу (8) у вигляді

. (9)

З рис. 4.7 бачимо, що величина є тангенсом кута нахилу хорди, що проходить через точки А і В графіка функції
у = f (х) з абсцисами а і b.

Рис. 7

Водночас, — тангенс кута нахилу дотичної до кривої у точці С з абсцисою . Таким чином, геометричний зміст рівності (8) або рівносильної для неї рівності (9) можна визначити так: якщо для всіх точок кривої у = f (х) існує дотична, то на цій кривій знайдеться точка з абсцисою , в якій дотична паралельна хорді АВ, що сполучає точки А і В.

Теорема Коші. Якщо f (x) і дві функції: 1) неперервні на сегменті [a; b]; 2) диференційовні на інтервалі (а; b); 3) для , то на інтервалі (а; b) знайдеться хоча б одна точка , така що





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.