МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Рівняння дотичної і нормалі до плоскої кривої





ЛЕКЦІЯ 5-6. ПОХІДНА ФУНКЦІЇ

ПЛАН

1. Означення похідної

2. Геометричний зміст похідної

3. Механічний зміст похідної

4. Рівняння дотичної і нормалі до плоскої кривої

5. Залежність між неперервністю і диференційованістю функції

6. Основні правила диференціювання

7. Похідні від основних елементарних функцій

8. Похідні вищих порядків

 

Означення похідної

Нехай функція визначена на деякому проміжку (а; b). Візьмемо значення і надамо аргументу приросту . Тоді функція набуде приросту . Розглянемо відношення приросту функції до приросту аргументу і перейдемо до границі при :

. (1)

Якщо границя (1) існує і скінченна, вона називається похідною функції за змінною х і позначається

.

Означення 1. Похідною функції за аргументом х називається границя відношення приросту функції до приросту аргументу, коли приріст аргументу прямує до нуля.

Операція знаходження похідної називається диференціюванням цієї функції.

Користуючись означенням похідної, знайти похідні функцій.

Приклад. Функція у = х2. Знайти похідну в точках х = 3 і х = – 4.

Надамо аргументу х приросту , тоді функція набуде приросту

Складемо відношення приросту функції до приросту аргументу , відшукаємо границю . Таким чином, .

Похідна в точці х = 3 , а похідна при х = – 4 буде .

Приклад. , де .

Надавши аргументу приросту , дістанемо приріст функ­ції . Тепер знайдемо границю відношення при :

, тобто

Приклад. .

Користуючись відомою з тригонометрії формулою

,

знайдемо приріст функції у точці і обчислимо границю:

,

;

.

Аналогічно можна дістати: .

Приклад. .

Для цієї функції маємо

,

тобто .

Геометричний зміст похідної

Означення 2. Дотичною до кривої L у точці М називається граничне положення МN січної ММ1 при прямуванні точки М1 по кривій L до точки М (рис. 1).

Нехай крива, задана рівнянням , має дотичну в точці М (х, у). Позначимо (рис. 2) кутовий коефіцієнт дотичної МN: . Надамо в точці х приросту , тоді ордината у набуде приросту .

З випливає, що . Коли , то і січна прямує до положення дотичної МN.

Таким чином, .

Рис. 1 Рис.2

Оскільки , то тобто похідна чисельно дорівнює кутовому коефіцієнту дотичної, проведеної до графіка функції у точці з абсцисою х. У цьому полягає геометричний зміст похідної.

Механічний зміст похідної

Припустимо, що точка М рухається прямолінійно нерівномірно по деякій прямій лінії, яку візьмемо за вісь Ох (рис. 3).

Рис. 3

Рух точки відбувається за законом х = f (t), де х — шлях; t — час. Знайдемо швидкість точки М у даний момент часу t (миттєва швидкість).

Нехай точка М у момент t перебувала на відстані х від початкової точки М0, а в момент часу точка опинилася на відстані від початкової точки й зайняла положення М1. Отже, час t набув приросту , а шлях х — приросту . Середня швидкість руху точки М за час описується формулою .

Якщо точка М рухається рівномірно, то V є величина стала, і її беруть за швидкість точки. Для нерівномірного руху точки очевидно, що для достатньо близьких значень до нуля середня швидкість точки М буде близька до її швидкості у момент часу t. Тому за точне значення швидкості точки М у момент часу t беруть величину

,

яка є швидкістю зміни функції х = f (t) у точці. У цьому полягає механічний зміст похідної.



Рівняння дотичної і нормалі до плоскої кривої

Нехай функція у=f(t) означена і неперервна на деякому проміжку [a; b]. Визначимо рівняння дотичної й нормалі до графіка функції у = f (x) у точці з абсцисою .

Оскільки дотична й нормаль проходять через точку з абсцисою х0, то рівняння кожної з них будемо шукати у вигляді рівняння прямої, що проходить через задану точку М0 (х0; у0) у даному напрямі (рис. 4):

, (2)

де k кутовий коефіцієнт дотичної. Використовуючи геометричний зміст похідної, маємо .

Рис. 4

Рівняння дотичної.Оскільки , то з виразу (2) дістанемо рівняння дотичної у вигляді

. (3)

Рівняння нормалі.Означення. Нормаллю до графіка функції в точці М0 називається перпендикуляр, проведений до дотичної в цій точці (рис. 4).

Використовуючи умову перпендикулярності дотичної та нормалі, знаходимо кутовий коефіцієнт нормалі і записуємо її рівняння у вигляді

. (4)

Приклад. Знайти рівняння дотичної та нормалі до графіка функції у = х2 у точці з абсцисою х0=–3.

Знайдемо похідну від заданої функції , звідси .

Рівняння дотичної (3) і нормалі (4) запишуться так: або у загальному вигляді: 6х+у+9=0, х–6у+57=0.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.