МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Кинематические и некоторые динамические характеристики вращательного движения





Изучение законов вращательного движения твердого тела.

Лабораторные работы № 3,15

 

 

 

 

М и н с к 2 0 0 9


УДК 531.38(076.5)

ББК 22.213я7

Б72

Составители:

Бобученко Д.С., Бумай Ю.А., Красовский В.В..

 

Рецензенты:

Кужир П.Г., Хорунжий И.А.

 

 

Изучение законов вращательного движения твердого тела: лабораторные работы 3, 15. - Мн.:БНТУ, 2009:.- с.

 

Данное издание содержит описание двух лабораторных работ, посвященных изучению законов вращательного движения твердого тела.

В работах рассмотрены наиболее важные характеристики вращательного движения, основной закон динамики вращательного движения, закон сохранения момента импульса, изложена теория гироскопического эффекта. Приведено описание лабораторных установок и задание.

Пособие предназначено для студентов инженерных специальностей, изучающих раздел “Механика” курса общей физики.

 

 

ã.Бобученко Д.С., Бумай Ю.А., Красовский В.В..


Содержание

 

Лабораторная работа № 3. Динамика вращательного движения твердого тела.  
Лабораторная работа № 15. Изучение движения гироскопа.    

 


Лабораторная работа № 3

 

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

Цель работы:

1. Изучение основных характеристик вращательного движения.

2. Изучение законов вращательного движения твердого тела.

Задача работы: определить момент силы трения.

Кинематические и некоторые динамические характеристики вращательного движения

Вращательное движение – это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения (рис.1).

Абсолютно твердое тело (или просто твердое тело) – это тело, изменением размеров и формы которого можно пренебречь, т.е. расстояния между любыми частями тела остаются неизменными.

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Пусть некоторая точка движется по окружности радиуса R (Рис.1) и за промежуток времени Dt повернулась на угол Dj.

Элементарные (бесконечно малые) углы поворотов Dj (или dj) можно рассматривать как векторы. Модуль вектора Δjравен значению угла поворота, а сам вектор Δjнаправленвдоль оси вращения в сторону, определяемую правилом правого винта(т.е. его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения по окружности). Этот вектор не имеет определенных точек приложения: он может откладываться из любой точки на оси вращения. Угловой скоростью называется векторная величина, равная первой производной угла поворота по времени:

Рис.1.

Вектор w направлен вдоль оси вращения по правилу правого винта. Линейная скорость точки:

.

В векторном виде формулу для линейной скорости можно написать как векторное произведение угловой скорости и радиуса вектора точки r относительно любой точки на оси врвщения:

.

Если вращение равномерное, т.е. w=const, его можно характеризовать периодом вращения T –временем, за которое точка или тело совершает один полный оборот. Число полных оборотов, совершаемых телом при равномерном вращении за единицу времени называется частотой вращения: n=1/T.

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:



Как видно из определения, направление углового ускорения совпадает с направлением изменения угловой скорости. Поэтому при ускоренном вращении тела вокруг неподвижной оси вектор углового ускорения направлен также как вектор угловой скорости, при замедленном – эти вектора направлены в разные стороны.

Моментом силы относительно осиназывается скалярная величина, равная произведению силы на ее плечо. Плечо силы относительно оси – это кратчайшее расстояние от оси вращения до прямой, вдоль которой действует сила (линия действия силы).

Рис.2.

Моментом M силы F относительно точки О называется векторная величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку приложения силы (точка А), на силу F(Рис.2):

.

Модуль вектора момента силы: , где a - угол между векторами r и F, d = r*sina – плечо силы относительно точки – кратчайшее расстояние между линией действия силы и точкой О. Вектор Mперпендикулярен к плоскости, в которой лежат векторы r и F. Направление вектора M совпадает с направлением поступательного движения правого винта при его вращении от r к F по кратчайшему расстоянию, как показано на рисунке.

Момент силы относительно оси также равен проекции на эту ось вектора момента силы M определенного относительно произвольной точки на этой оси. Значение момента силы относительно оси не зависит от выбора положения точки на оси.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.