МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Условия независимости криволинейного интеграла от пути интегрирования на плоскости.





Лекция 4

Тема: Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.

Формула Грина.

Формула Грина устанавливает связь между криволинейным интегралом по замкнутому контуру Г на плоскости и двойным интегралом по области, ограниченной данным контуром.

Замкнутый контур Г мы будем считать кусочно-гладким и без самопересечений.

Криволинейный интеграл по замкнутому контуру Г обозначается символом Замкнутый контур Г начинается в некоторой точке В этого контура и заканчивается в точке В. Интеграл по замкнутому контуру не зависит от выбора точки В.

Определение 1. Обход контура Г считается положительным, если при обходе контура Г область D остаётся слева. Г+ - контур Г обходится в положительном направлении, Г - - контур обходится в отрицательном направлении.

Г+
D

Теорема. Если P(x,y) и Q(x,y) непрерывны вместе со своими частными производными в ограниченной замкнутой области D, то справедлива формула Грина:

Где Г=

Г+ означает, что контур Г обходится в положительном направлении.

Доказательство. Доказательство проведем для односвязной области D, т.е. Г= состоит из одного замкнутого контура. При этом вначале будем предполагать, что любая прямая параллельная оси 0Х или 0Y пересекает Г не более, чем в двух точках.

 

X
Y
 
c
d
X= x1(y)
X= x2(y)  
a
b
B
C
Y= y2(x)  
Y= y1(x)  
m
n
Рассмотрим двойной интеграл

.

 

(1)

 

Аналогично доказывается, что:

(2)

Из равенств (1) и (2) получаем:

 

Следовательно,

Формула Грина при сделанных предположениях доказана.

Замечание 1. Формула Грина остаётся справедливой, если граница Г области D некоторыми прямыми, параллельными оси 0Х или 0Y пересекается более чем в двух точках. Кроме этого формула Грина справедлива и для n-связных областей.

Условия независимости криволинейного интеграла от пути интегрирования на плоскости.

В этом параграфе выясним условия, при выполнении которых криволинейный интеграл не зависит от пути интегрирования, а зависит от начальной и конечной точек интегрирования.

Теорема 1. Для того, чтобы криволинейный интеграл не зависел от пути интегрирования в односвязной области необходимо и достаточно, чтобы этот интеграл, взятый по любому замкнутому кусочно-гладкому контуру в этой области равнялся нулю.

Доказательство: Необходимость. Дано: не зависит от пути интегрирования. Требуется доказать, что криволинейный интеграл по любому замкнутому кусочно-гладкому контуру равен нулю.

Пусть в рассматриваемой области D взят произвольный кусочно-гладкий замкнутый контур Г. На контуре Г возьмем произвольные точки B и C.

Г
D
n
m
B
C
Так как не зависит от пути интегрирования, то

, т.е.

 

Достаточность. Дано: Криволинейный интеграл по любому замкнутому кусочно-гладкому контуру равен нулю.

Требуется доказать, что интеграл не зависит от пути интегрирования.

Рассмотрим криволинейный интеграл по двум кусочно-гладким контурам, соединяющим точки B и С. По условию:

т.е. криволинейный

интеграл не зависит от пути интегрирования.

Теорема 2. Пусть непрерывны вместе с частными производными и в односвязной области D. Для того, чтобы криволинейный интеграл не зависел от пути интегрирования необходимо и достаточно, чтобы в области D выполнялось тождество



Доказательство: Достаточность. Дано: . Требуется доказать, что не зависит от пути интегрирования. Для этого достаточно доказать, что равен нулю по любому замкнутому кусочно-гладкому контуру . По формуле Грина имеем:

Необходимость. Дано: По теореме 1 криволинейный интеграл не зависит от пути интегрирования. Требуется доказать, что

Доказательство: Доказательство проведем от противного. Предположим, что

, т.е. в некоторой точке М0(x0,y0). Пусть для определенности M0>α>0. По условию и непрерывны в точке М0, поэтому существует круг u(М0,r) c центром в точке М0 некоторого радиуса r>0, который лежит в области D и в котором выполняется неравенство - M0>α. Окружность с центром в точке М0 радиуса r обозначим через γ. По формуле Грина имеем:

,

что противоречит условию, т.к. по условию криволинейный интеграл не зависит от пути интегрирования и по теореме 1. криволинейный интеграл по любому замкнутому контуру равен нулю.▼





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.