МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Корреляционный анализ - математико-статистический метод выявления взаимозависимости компонент многомерной случайной величины и оценки тесноты их связи.





К. Пирсон и Дж. Юл разработали корреляционный анализ, который по их мнению должен ответить на вопрос о том, как выбрать с учетом специфики и природы анализируемых переменных подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, и т.д.), решить задачу, как оценить его числовые значения по уже имеющимся выборочным данным. Корреляционный анализ поможет: найти методы проверки того, что полученное числовое значение анализируемого измерителя связи действительно свидетельствует о наличии статистической связи; определить структуру связей между исследуемыми k признаками х 1, х 2,…, сопоставив каждой паре признаков ответ («связь есть» или «связи нет»).

Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами., он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. То же самое относится к частным и множественным коэффициентам корреляции. Парный коэффициент корреляции, характеризует тесноту связи между случайными величинами х и у, определяется по формуле:

Если р = 0, то между величинами х и у линейная связь отсутствует и они называются некоррелированными .Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.

Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от -1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.

 

 

28. Точечная и интервальная оценки коэффициента корреляции, проверка его значимости в корреляционном анализ. При построении доверительного интервала для неизвестного коэффициента корреляции используется специальная функция - -преобразование Фишера (гиперболический арктангенс) выборочного коэффициента корреляции r:

 

.

- возрастающая нечетная функция: z(-r) = -z(r).

Распределение вероятностей значений приближается (тем более точно, чем больше объем выборки n) нормальным распределением вероятностей с параметрами:

 

и .

Статистика имеет асимптотическое стандартное нормальное распределение .

Асимптотически точный доверительный интервал надежности для нормированного отклонения z:

 

,

 

где - квантиль уровня распределения , т.е. корень уравнения .

Доверительный интервал для математического ожидания :

 

.

 

Величиной в выражении можно пренебречь, принимая во внимание, что она при есть бесконечно малая более высокого порядка в сравнении с .

Доверительный интервал для гиперболического арктангенса коэффициента корреляции :

 

.

 

Решение относительно данного двойного неравенства приводит к искомому доверительному интервалу для коэффициента корреляции:

 

,

 

с границами, определяемыми как значения гиперболического тангенса для значений , равных соответственно и .

Функция задает преобразование, обратное -преобразованию Фишера. Следовательно, .

 

29. Определение оценок параметров b0 и b1 двумерной линейной модели регрессии с помощью метода наименьших квадратов.Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова

Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.

Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:

Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).

Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид:

Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра:

β0 , β1 , σ. (3)

Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4)

Тогда в рамках исследуемой модели данные величины связаны следующим образом:

y1 = a0 + a1 * x1 + u1,

y2 = a0 + a1 * x2 + u2, (5)

yn= a0 + a1 * x n + u n.

Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова.

Компактная запись схемы Гаусса-Маркова:

где

– вектор-столбец известных значений эндогенной переменной yiмодели регрессии;

– вектор-столбец неизвестных значений случайных возмущений εi;

– матрица известных значений предопределенной переменной xi модели;

β = (β0 β1 )Т (10) – вектор неизвестных коэффициентов модели регрессии.

Обозначим оценку вектора неизвестных коэффициентов модели регрессии как

Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:


где P (X, ỹ) – символ процедуры.

Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi, если выполняется условие:

где

(14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi.

Теорема Гаусса-Маркова. Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям:

E(ε1) = E(ε2) = … = E(εn) = 0, (15)

Var(ε1) = Var(ε2) = … = Var(εn) = σ2(16)

Cov(εi, εj) = 0 при i≠j(17)

Cov(xi,εj) = 0 при всех значениях i и j (18)

В этом случае справедливы следующие утверждения:

а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид:

б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов:

в) ковариационная матрица оценки (19) вычисляется по правилу:

г) несмещенная оценка параметра σ2 модели (2) находится по формуле:

Следствие теоремы Гаусса-Маркова. Оценка

доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений:

Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам:

[x] = x1 + x2 +…+ xn,

[y] = y1 + y2 +…+ yn, (24)

x2] = x12 + x22 +…+ xn2,

[xy] = x1*y1 + x2*y2 + … + xn*yn.

Явный вид решения системы (23):


30 Проверка значимости и интервальное оценивание коэффициента регрессии b1 в регрессионном анализе.

Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотезы Н0: βj = 0, где j = 1, 2, ..., k, используют t-критерий и вычисляют tнабл(bj) = bj / bj. По таблице t-распределения для заданного α и v = п - k - 1 находят tкр.

Гипотеза H0 отвергается с вероятностью α, если tнабл > tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т.е. βj 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначительных переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Существуют и другие алгоритмы пошагового регрессионного анализа, например с последовательным включением факторов.

Наряду с точечными оценками bj генеральных коэффициентов регрессии βj регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.

Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид

 

(53.19)

 

где tα находят по таблице t-распределения при вероятности α = 1 - γ и числе степеней свободы v = п - k - 1.

Интервальная оценка для уравнения регрессии в точке, определяемой вектором-столбцом начальных условий X0 = (1, x , x ,,..., x )T записывается в виде

 

(53.20)

 

Интервал предсказания n+1 с доверительной вероятностью у определяется как

 

(53.21)

 

где tα определяется по таблице t-распределения при α = 1 - γ и числе степеней свободы v = п - k - 1.

По мере удаления вектора начальных условий х0 от вектора средних ширина доверительного интервала при заданном значении γ будет увеличиваться (рис. 53.2), где = (1, ).

 

30.

Рис. 53.2. Точечная и интервальная оценки уравнения регрессии .

 


 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.