Величина двоїстої оцінки показує наскільки збільшиться значення цільової функції якщо запас ресурсу збільшиться на одну одиницю 5. Гетероскедастичність означає, що : дисперсія випадкової складової моделі не є сталою величиною ; 6. Гомоскедастичність означає, що : дисперсія випадкової складової моделі є сталою величиною ; 7. Дистрибутивно – лагова модель – це : модель динаміки, яка у якості лагових змінних містить тільки пояснюючі змінні моделі ; 8. Дисперсійно-коваріаційна матриця оцінок параметрів моделі у випадку множинної лінійної регресії – це : матриця, елементами якої є дисперсії і коваріації параметрів вибіркової моделі ; 9. Діаграма розсіювання - це: графік значень незалежної і залежної змінних; 10. Для тестування автокореляції залишків в авторегресійних моделях використовується : тест Дарбіна на основі h - критерію ; 11. Для визначення граничної ефективності впливу (абсолютного впливу) пояснюючих змінних на залежну у випадку багатофакторної лінійної економетричної моделі використовуються : коефіцієнти регресії (параметри моделі) ; 12. Для визначення відносного впливу пояснюючих змінних на залежну у випадку багатофакторної лінійної економетричної моделі використовуються : часткові коефіцієнти еластичності; 13. Для визначення сили впливу пояснюючих змінних на залежну у випадку багатофакторної лінійної економетричної моделі використовуються : стандартизовані коефіцієнти регресії. 14. Для загальної лінійної економетричної моделі інтервали довіри для параметрів моделі визначається як : ; 15. Для багатофакторної лінійної моделі з n спостереженями, m незалежними змінними і k параметрами розрахункове значення F – статистики визначається як : ; 16. Для оцінювання параметрів моделі у випадку гетероскедастичності використовується : Метод Ейткена ; 17. Для оцінювання параметрів моделі з автокорельованими залишками використовується : Метод Ейткена . 18. Для розв’язання транспортної задачі необхідно і достатньо : щоб модель транспортної задачі була закритою 19. Економетрична модель називається узагальненою, якщо : у ній порушується принаймні хоча б одне з припущень стосовно відсутності мультиколінеарності, гетероскедастичності і автокореляції залишків. 20. Економіко-математичне моделювання - це : дослідження економічних систем, явищ і процесів на основі їх математичного моделювання ; 21. Економіко-математичне модель : завжди виражає і описує тільки найсуттєвіші зв’язки між економічними об’єктами і їх характеристиками. 22. Економетричні методи та моделі вивчають : як якісні так і кількісні причинно-наслідкові взаємозв’язки економічних об’єктів і процесів. 23. Економетричні методи та моделі використовуються : як для прогнозування так і для економіко-математичного аналізу. 24. За інших рівних умов, якщо ми збільшуємо кількість пояснюючих змінних у багатофакторній лінійній регресійній моделі : R2 збільшується ; 25. За якою з наведених формул визначається вектор оцінок параметрів лінійної економетричної моделі: B=(X'X)-1 (X'Y) ; 26. За інших рівних умов, якщо ми збільшуємо кількість незалежних змінних у багатофакторній лінійній регресійній моделі : може або збільшитись, або зменшитись. 27. Задача цілочислового програмування - це задача математичного програмування, у якій: змінні задачі можуть приймати тільки цілочислові значення 28. Значення цільової функції двоїстої задачі лінійного програмування : завжди дорівнює значенню цільової функції прямої задачі 29. Інтервал довіри для параметру загальної лінійної економетричної моделі – це : інтервал значень, які може приймати дійсний параметр теоретичної моделі з деякою наперед заданою ймовірністю (надійністю) ; 30. Кількість невідомих двоїстої задачі дорівнює: кількості обмежень прямої задачі 31. Кожній змінній прямої задачі відповідає: обмеження двоїстої задачі 32. Кількість обмежень двоїстої задачі дорівнює: а) кількості невідомих прямої задачі б) кількості коефіцієнтів при невідомих у цільовій функції прямої задачі 33. Кожному обмеженню прямої задачі відповідає: змінна двоїстої задачі 34. Кореляційна матриця у випадку множинної лінійної регресії – це : матриця, елементами якої є коефіцієнти парної кореляції ; 35. Коефіцієнтами при змінних у цільовій функції двоїстої задачі є : праві частини системи обмежень прямої задачі 36. Коефіцієнт кореляції у загальному випадку багатьох змінних вимірює: щільність лінійного зв’язку між залежною і незалежними змінними економетричної моделі ; 37. Коефіцієнт детермінації у загальному випадку багатьох змінних вимірює: частину загальної варіацію залежної змінної, що пояснюється функцією регресією; 38. Критерій методу найменших квадратів має вигляд : ; 39. Матриця коефіцієнтів при змінних у системи обмежень двоїстої задачі є : транспонованою до матриці коефіцієнтів при змінних системи обмежень прямої задачі 40. Математична модель будь-якої задачі математичного програмування включає: цільову функцію і систему обмежень; 41. Мультиколінеарність означає, що : між двома чи більше пояснюючими змінними моделі існує лінійний функціональний або тісний кореляційний зв’язок ; 42. Метою етапу верифікації економетричної моделі є : перевірка якості побудованої вибіркової економетричної моделі; 43. Метою етапу специфікації економетричної моделі є : визначення аналітичної форми рівняння регресії ; 44. Метою етапу параметризації економетричної моделі є : оцінювання параметрів моделі . 45. Модель регресії описує : статистичну (стохастичну) залежність між значенням залежної змінної і незалежними змінними; 46. Область допустимих розв’язків цілочислової задачі лінійного програмування представляє собою: дискретну множину 47. Одним із методів побудови опорного плану транспортної задачі є : метод мінімальної вартості 48. Оцінений коефіцієнт детермінації в основному використовується для : для порівняння лінійних економетричних моделей з різним числом пояснюючих змінних при однаковій залежній змінній ; 49. Оптимізаційні методи та моделі використовується : для обґрунтування оптимальних рішень в сфері управління та планування; 50. Оптимізаційні задачі, для яких критерій оптимальності має вигляд цільової функції є предметом : математичного програмування. 51. Оптимальним є розв’язок задачі лінійного програмування у якій функція мети набуває : екстремального значення 52. Оптимальним є рішення транспортної задачі у якому цільова функція : досягає мінімального значення 53. Параметри економетричної моделі у випадку гетероскедастичності знаходяться за залежністю : . 54. Параметри економетричної моделі у випадку автокореляції залишків знаходяться за залежністю : ; 55. При перевірці статистичної значимості параметрів загальної лінійної економетричної моделі використовується: t – статистика . 56. При перевірці статистичної значимості у цілому загальної лінійної економетричної моделі використовується: F - статистика; 57. Регресія - це : функціональна залежність між математичним сподівання (середнім) залежної змінної і незалежними змінними ; 58. Симплекс-метод це : метод визначення оптимального плану задачі лінійного програмування 59. Система обмежень транспортної задачі встановлює : обмеження на запаси вантажу і потреби у ньому 60. Ступінь вільності n для t-статистики при перевірці статистичної значимості параметрів загальної лінійної моделі і вибіркового коефіцієнта множинної кореляції, що має 3 незалежних змінних і оцінена на основі 35 спостережень, дорівнює : 31. 61. Ступінь вільності n1 F- статистики для багатофакторної лінійної економетричної моделі, що має 4 пояснюючих змінних і оцінена на основі 50 спостережень, дорівнює : 4 ; 62. Ступінь вільності n2 F- статистики для багатофакторної лінійної економетричної моделі, що має 4 незалежних змінних і оцінена на основі 50 спостережень, дорівнює : 45. 63. Транспортна задача є закритою коли : обсяг запасів у постачальників дорівнює обсягу потреб споживачів 64. У випадку мультиколінеарності маємо : оцінки параметрів моделі із зміщенням ; 65. У випадку гетероскедастичності маємо : неефективні оцінки параметрів моделі ; 66. У випадку автокореляції залишків маємо : неефективні оцінки параметрів моделі ; 67. У двоїстій задачі лінійного програмування невідомими є : двоїсті оцінки ресурсів 68. У двохфакторній вибірковій лінійній моделі y=b0+b1x1+b2x2+e при збільшенні фактора х1 на 1 при незмінному значені х2 і додатному значенні b1 : у збільшиться у середньому на величину b1 ; 69. У системі обмежень транспортної задачі обсяги перевезень по кожному постачальнику : дорівнюють його запасам 70. У системі обмежень транспортної задачі обсяги поставок по кожному споживачу : дорівнюють його потребам 71. У загальній лінійній економетричні моделі кожен параметр характеризує: абсолютний вплив пояснюючої змінної xj на залежну за умови, що всі інші пояснюючі змінні залишаються незмінними ; 72. У результаті розв’язання задачі математичного програмування необхідно визначити: оптимальний план і значення цільової функції. 73. У транспортній задачі обсяг запасів фіктивного постачальника розраховують як : різницю між обсягом загальних потреб і запасів 74. У транспортній задачі обсяг запасів фіктивного споживача розраховують як : різницю між обсягом загальних запасів і потреб 75. У транспортній задачі матриця тарифів перевезень є: завжди наперед заданою 76. У функції регресії нахил дорівнює: 1,2; 77. У функції регресії: перетин дорівнює: 0,34; 78. Функція регресії описує : функціональну залежність між математичним сподівання (середнім) залежної змінної і незалежними змінними ; 79. Функція мети транспортної задачі є : лінійною 80. Функція мети задачі лінійного програмування є: завжди лінійною 81. Функція мети транспортної задачі : мінімізує вартість перевезень 82. Фіктивного постачальника у транспортній задачі вводять у випадку коли : сумарні потреби споживачів перевищують запаси у постачальників |