МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Свойства криволинейного интеграла второго рода





Свойства криволинейного интеграла первого рода

Криволинейный интеграл I рода обладает следующими свойствами:

 

1. Интеграл не зависит от ориентации кривой;

 

2. Пусть кривая C1 начинается в точке A и заканчивается в точке B, а кривая C2 начинается в точкеB и заканчивается в точке D (рисунок 2). Тогда их объединением будет называться криваяC1 U C2, которая проходит от A к B вдоль кривой C1 и затем от B к D вдоль кривой C2. Для криволинейных интегралов первого рода справедливо соотношение

 

3. Если гладкая кривая C задана параметрически соотношением и скалярная функцияF непрерывна на кривой C, то

 

4. Если C является гладкой кривой в плоскости Oxy, заданной уравнением , то

 

5. Если гладкая кривая C в плоскости Oxy определена уравнением , то

 

6. В полярных координатах интеграл выражается формулой

где кривая C задана в полярных координатах функцией .

 

 

БИЛЕТ№44

Вычисление криволинейного интеграла первого рода

Пусть — гладкая, спрямляемая кривая, заданная параметрически (как в определении). Пусть функция определена и интегрируема вдоль кривой в смысле криволинейного интеграла первого рода. Тогда

.

Здесь точкой обозначена производная по : .

 

БИЛЕТ45

Механические приложения

· Работа A по перемещению материальной точки вдоль кривой l под воздействием силы вычисляется по формуле

· Масса m кривой l, линейная плотность которой вдоль кривой l равна μ(x, y, z), выражается интегралом

· Координаты (xc, yc, zc) центра масс (центра тяжести) кривой l с линейной плотностью μ(x, y, z) находятся по формулам:

,

,

,

где m — масса кривой l

· Моменты инерции кривой l относительно координатных осей:

,

,

· Сила притяжения точечной массы материальной кривой l есть

,

где μ(z, y, z) — линейная плотность кривой l, m0 — масса точки с координатами (x0, y0, z0); γ — постоянная тяготения,

 

 

БИЛЕТ№46 Криволинейные интегралы второго рода
 
Определение Предположим, что кривая C задана векторной функцией , где переменная s − длина дуги кривой. Тогда производная векторной функции представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1). В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осейOx, Oy и Oz, соответственно.
 
Рис.1   Рис.2

Введем векторную функцию , определенную на кривой C, так, чтобы для скалярной функции

существовал криволинейный интеграл . Такой интеграл называется криволинейным интегралом второго рода от векторной функции вдоль кривой C и обозначается как

Таким образом, по определению,

где − единичный вектор касательной к кривой C.

Последнюю формулу можно переписать также в векторной форме:

где .

Если кривая C лежит в плоскости Oxy, то полагая R = 0, получаем

Свойства криволинейного интеграла второго рода

Криволинейный интеграл II рода обладает следующими свойствами:

 

1. Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через−Cкривую противоположного направления - от B к A. Тогда

 

2. Если C − объединение кривых C1 и C2 (рисунок 2 выше), то



 

3. Если кривая C задана параметрически в виде , то

 

4. Если кривая C лежит в плоскости Oxy и задана уравнением (предполагается, чтоR =t = x), то последняя формула записывается в виде

 

БИЛЕТ№47

Вычисление криволинейного интеграла второго рода

Пусть — гладкая, спрямляемая кривая, заданная параметрически (как в определении). Пусть функция определена и интегрируема вдоль кривой в смысле криволинейного интеграла второго рода. Тогда

,

,

.

Если обозначить за единичный вектор касательной к кривой , то нетрудно показать, что

 

БИЛЕТ№48

Формула Грина
 
Пусть в плоскости Oxy задана область R, ограниченная замкнутой, кусочно-непрерывной и гладкой кривой C. Предположим, что в некоторой области, содержащей R, задана непрерывная векторная функция с непрерывными частными производными первого порядка . Тогда справедлива формула Грина где символ указывает, что кривая (контур) C является замкнутой, и обход при интегрировании вдоль этой кривой производится против часовой стрелки. Если , то формула Грина принимает вид где S − это площадь области R, ограниченной контуром C. Формулу Грина можно записать также в векторной форме. Для этого введем понятия ротора векторного поля. Пусть векторное поле описывается функцией Ротором или вихрем векторного поля называется вектор, обозначаемый или и равный Формула Грина в векторной форме записывается в виде Заметим, что формула Грина вытекает из "теоремы Стокса" при переходе от трехмерного случая к случаю двух координат.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.