МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Принцип сопряженного торможения или реципрокности





Билет №1

1.Понятие возбудимости. Механизм формирования мембранного потенциала покоя (МП) нервной клетки?

Возбудимость – свойство нервных и мышечных клеток отвечать на действие раздражителя возбуждением. Возбуждение – ответная реакция клетки, проявляющаяся в неспецифических и специфических реакциях.

• Клетки нервной, мышечной и железистой тканей специально приспособлены к осуществлению быстрых реакций на раздражение.

• Клетки этих тканей называют возбудимыми, а их способность отвечать на различные раздражения возбуждением - возбудимостью.

Возбудимость - это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния.

• Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны, (изменение ее мембранного потенциала, МП, и генерация распространяющегося потенциала действия, ПД).

• Возникнув в одной клетке или в одном ее участке, возбуждение распространяется на другие участки той же клетки или на другие клетки.

 

Механизм формирования мембранного потенциала покоя (МП) нервной клетки

• В покое мембрана нервных волокон примерно в 25 раз более проницаема для ионов К, чем для ионов Na+, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую.

• Большое значение для возникновения мембранного потенциала имеет градиент концентрации ионов по обе стороны мембраны. Показано, что цитоплазма нервных и мышечных клеток содержит в 30-60 раз больше ионов К+, но в 8-10 раз меньше ионов Na+ и в 50 раз меньше ионов Cl-, чем внеклеточная жидкость.

Величина потенциала покоя нервных клеток определяется соотношением положительно заряженных ионов К+, диффундирующих в единицу времени из клетки наружу по градиенту концентрации, и положительно заряженных ионов Na+, диффундирующих по градиенту концентрации в обратном направлении.

 

 

2 вопрос

Функции нейронов. Классификация нейронов?

По функциям:

а. Афферентные, или чувствительные. Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС.

б. Вставочные, или интернейроны, промежуточные. Обеспечивают переработку, хранение и передачу информации к эфферентным нейронам. Их в ЦНС большинство.

в. Эфферентные или двигательные. Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

 

Кроме нейронов в ЦНС имеются клетки нейроглии. Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада. Предполагают, что глия участвует в формирование условных рефлексов и памяти.



Классификация нейронов по форме

По форме нейроны делят на:

Биполярные, Униполярные, Псевдоуниполярные, Мультиполярные.

 

Классификация нейронов по характеру вы­деляемых медиаторов

По химической характеристике вы­деляемых в окончаниях аксонов веществ, отличают нейроны:

    • Холинэргические,
    • Пептидэргические,
    • Норадреналинэргические,
    • Дофаминэргические,
    • Серотонинэргические и др.

Классификация нейронов по признаку чувствительность к разным раздражителям

По признаку чувствительность к разным раздражителям нейроны делят на

    • Моносенсорные,
    • Бисенсорные
    • Полисенсорные.

Моносенсорные нейроны располагают­ся чаще в первичных проекционных зонах коры и реагируют только на сигналы своей модальности. Например, значительная часть ней­ронов первичной зрительной коры реагирует только на световое раздражение сетчатки глаза.

Бисенсорные нейроны располагаются преимущественно во вторичных зонах коры анализатора и могут реагировать как на сигналы своей, так и на сигналы другой мо­дальности. Например, нейроны вторичной зрительной коры реаги­руют на зрительные и слуховые раздражения.

Полисенсорные ней­роны — это чаще всего нейроны ассоциативных зон мозга. Они способны реагировать на раздражение слуховой, зрительной, кожной и др. анализаторных систем.

Виды фоновой активности нейронов

Нервные клетки разных отделов нервной системы могут разря­жаться при отсутствии сенсорных раздражителей — спонтанноактивные, или фоновоактивные, их в коре около 3%. Существуют также молчащие нейроны, реагирующие импульсами только в ответ на какое-либо раздражение.

Фоновоактивные нейроны делят на:

  • тормозящиеся — урежающие частоту разрядов и
  • возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение

 

Билет №2

1. Механизм формирования потенциала действия (ПД). Фазы потенциала действия.

2. Методы исследования ВНД.

 

1. Потенциал действия. Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал , или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

Кроме пика, в ПД различают два следовых потенциала - следо-вую деполяризацию (следовой отрицательный потенциал) и следо-вую гиперполяризацию (следовой положительный потенциал. Ам-плитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К+ превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na+. Поэтому мембрана в покое снаружи заряжена положительно.

При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К+ Поэтому поток ионов Na+ в клетку начинает значительно превышать направленный наружу поток К+. Ток Na+ достигает величины +150 мв. Одновременно несколько уменьшается выход К+ из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

Условия возникновения возбуждения. Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео ) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации ( Ео <= Eк)

2. Основной метод исследования ВНД - метод условных рефлексов. В зави-симости от характера вырабатываемого рефлекса методы его получения и реги-страции могут быть разными – от классического Павловского условного слюноотделительного рефлекса до сложных форм инструментального поведения, когда в ответ на условный сигнал необходимо выполнить определенное действие, чтобы получить подкрепление (т.н. инструментальные условные рефлексы). Наряду с этими методиками, для исследования функций высших отделов ЦНС используется и целый ряд других методов – клиническое наблюдение, методы выключения разных отделов мозга, метод раздражения, морфологические, биохимические и гистохимические методы, методы математического и кибернетического моделирования, ЭЭГ, множество методов психологического тестирования, методы изучения разных форм навязанного или спонтанного поведения в стандартных или меняющихся условиях и т.д. О них Вы более подробно узнаете на практических занятиях.

Успехи физиологии высшей нервной деятельности оказали широкое влия-ние на развитие наук о мозге и поведении. В последние года в мировой науке отчетливо выражена тенденция к интеграции сведений, полученных в смежных областях знания, и созданию на этой основе системы нейронаук. Таким образом, физиология ВНД оказалась тесно связанной с психофизиологией, нейропсихологией, сравнительной психологией, генетикой поведения, нейрофизиологией и другими областями знаний, составляющих систему нейронаук.

Билет 3

1. Основные параметры возбудимости (порог возбудимости, полезное время, аккомодация, лабильность).

Возбудимость - это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния. Возбудимостью называется способность нервной или мышечной клетки отвечать на раздражение генерацией ПД. Основным мерилом возбудимости обычно служит реобаза. Чем она ниже, тем выше возбудимость, и наоборот

Параметры возбудимости :1. Порог возбудимости 2. Полезное время 3. Критический наклон 4. Лабильность

Порог раздражения: Минимальное значение силы раздражителя (электрического тока), необходимое для снижения заряда мембраны от уровня покоя (Ео) до критического уровня (Ек), называется пороговым раздражителем. Порог раздражения Еп = Ео - Ек

Подпороговый раздражитель меньше по силе, чем пороговый

Надпороговый раздражитель - сильнее порогового

Полезное время- Наименьшее время, в течение которого должен действовать раздражающий стимул. (наример:При очень кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения (электрофорез, фонофорез, УВЧ-терапия))

Аккомодация -это явление приспособления возбудимой ткани к медленно нарастающему раздражителю

Лабильность – это максимальное число импульсов, которое возбудимая ткань способна воспроизвести в соответствии с частотой раздражения (нерв-свыше 100 гц ,мышца – около 50 гц )

 

2вопрос

Взаимодействие между симпатической и парасимпатической нервной системой. Симпатические и парасимпатические эффекты.

 

Между симпатическими и парасимпатическими нервами существует взаимодействие, выражающееся в том, что раздельное раздражение этих нервов вызывает со стороны некоторых органов противоположные эффекты, а одновременное возбуждение обоих нервов нередко приводит к тому, что симпатические нервы усиливают функцию парасимпатических.

Большинство внутренних органов обладают двойной иннервацией: к каждому из них подходят симпатические и парасимпатические нервы. На многие органы симпатический и парасимпатический нервы оказывают противоположное влияния.

Симпатические и парасимпатические эффекты

Орган Симпатическая Парасимпатическая
Голова Расширяет зрачки Угнетает слюноотделение Сужает зрачки Стимулирует слюноотделение и слезотечение
Сердце Повышает амплитуду и частоту сокращений Уменьшает амплитуду и частоту сокращений
Легкие Расширяет бронхи Усиливает вентиляцию Сужает бронхи Уменьшает вентиляцию
Кишечник Угнетает перистальтику Угнетает секрецию пищеварительных соков. Усиливает сокращение анального сфинктера. Усиливает перистальтику Стимулирует секрецию пищеварительных соков. Угнетает сокращение анального сфинктера.
Кровеносная система Сужает артериолы кишечника и гладких мышц, расширяет артериолы мозга и скелетных мышц. Повышает кровяное давление. Увеличивает объем крови за счет сокращения селезенки. Поддерживает постоянный тонус артериол кишечника, мозга, гладких и скелетных мышц. Снижает кровяное давление.
Кожа Вызывает сокращение мышц, приподнимающих волосы. Сужает артериолы в коже конечностей. Усиливает пототделение. Расширяет артериолы в коже лица.
Почки Уменьшает диурез  
Мочевой пузырь Усиливает сокращение сфинктера мочевого пузыря. Расслабляет сфинктер мочевого пузыря.
Половой член Вызывает эякуляцию. Стимулирует эрекцию.
Железы Вызывает выброс адреналина из мозгового слоя надпочечников.  

 

 

Билет №4

1. Проведение возбуждения в нервных волокнах. Законы проведения возбуждения.

Скорость распространения волны возбуждения – нервного импульса – неодинакова у разных нейронов. Для нервных волокон она определяется главным образом диаметром волокна – чем больше диаметр волокна, тем скорость проведения выше.

Скорость проведения возбуждения зависит от того, принадлежит ли нервное волокно к мякотным (миелинизированным) или является безмякотным (немиелинизированным) волокном. Оболочка жироподобного вещества миелина служит хорошим изолятором, поэтому распространение волны возбуждения имеет разную скорость в этих типах волокон.

Афферентные раздражения проводятся по волокнам, различающимся по степени миелинизации и, следовательно, по скорости проведения импульса.

Волокна типа А — хорошо миелинизированы и проводят возбуждения со скоростью до 130-150 м/с. Они обеспечивают тактильные, кинестетические, а также быстрые болевые ощущения.

Волокна типа В— имеют тонкую миелиновую оболочку, меньший общий диаметр, что приводит и к меньшей скорости проведения импульса — 3-14 м/с. Они являются составными частями вегетативной нервной системы и не участвуют в работе кожно-кинестетического анализатора, но могут проводить часть температурных и вторичных болевых раздражений.

Волокна типа С — без миелиновой оболочки, скорость проведения импульса до 2—3 м/с. Они обеспечивают медленную болевую и температурную чувствительности, а также ощущение давления. Обычно это нечетко дифференцированная информация о свойствах раздражителя.

1. Закон физиологической непрерывности. Перерезка, перевязка, а также любое другое воздействие, нарушающее целость мембраны (физиологическую, а не только анатомическую), создают непроводимость.

2. Закон двустороннего проведения. При нанесении раздражения на нервное волокно возбуждение распространяется по нему в обоих направлениях (по поверхности мембраны - во все стороны) с одинаковой скоростью.

3. Закон изолированного проведения. В нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходят с одного волокна на другое. Это очень важно, так как обеспечивает точную адресовку импульса.

Связано это с тем, что электрическое сопротивление миелиновых и швановской оболочек, а также межклеточной жидкости значительно больше, чем сопротивление мембраны нервных волокон.

 

 

2. Нейрон и его компоненты. Особенности метаболизма нейронов.

 

Место отхождения аксона от тела нервной клетки (аксонный холмик) имеет наибольшее значение в возбуждении нейрона.

Это - триггерная зона нейрона, именно здесь легче всего возникает возбуждение. В этой области на протяжении 50-100 мкм аксон не имеет миелиновой оболочки, поэтому аксонный холмик и начальный сегмент аксона обладают наименьшим порогом раздражения (дендрит - 100 мв, сома - 30 мв, аксонный холмик - 10 мв).

Дендриты тоже играют определенную роль в возникновении возбуждения нейрона. На них в 15 раз больше синапсов, чем на соме, поэтому ПД, проходящие по дендритам к соме, способны легко деполяризовать сому и вызвать залп импульсов по аксону.

Особенности метаболизма нейронов

-Высокое потребление О2. Полная гипоксия в течение 5-6 минут ведет к гибели клеток коры.

-Способность к альтернативным путям обмена.

-Способность к созданию крупных запасов веществ.

-Нервная клетка живет только вместе с глией.

-Способность к регенерации отростков

(0,5 - 4 мк/сут).

Билет №5

1. Синапсы в ЦНС и их физиологическое значение. Классификация синапсов.

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку. Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы).

2. По развитию в онтогенезе: стабильные и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту: тормозные и возбуждающие.

4. По механизму передачи сигнала: электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические, адренергическис, дофаминергические

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм.

 

2. Рефлексы и функции спинного мозга.

Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.

Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд симпатических и парасимпатических вегетативных центров. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт, скелетные мышцы, т.е. все органы и ткани организма. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями.

В верхнем грудном сегменте, находится симпатический центр расширения зрачка, в пяти верхних грудных сегментах - симпатические сердечные центры. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).

Спинной мозг имеет сегментарное строение. Сегментом называют такой отрезок, который дает начало двум парам корешков. Если у лягушки перерезать на одной стороне задние корешки, а на другой передние, то, лапки на стороне, где перерезаны задние корешки, лишаются чувствительности, а на противоположной стороне, где перерезаны передние корешки, окажутся парализованными. Следовательно, задние корешки спинного мозга являются чувствительными, а передние - двигательными.

Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II - IV поясничном сегменте; ахиллова - в V поясничном и I - II крестцовых сегментах; подошвенного - в I - II крестцовом, центр брюшных мышц - в VIII - XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III - IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.


Билет 6

1. Учение о рефлексе.

В основе деятельности ЦНС лежит рефлекторный принцип.

Рефлекс – закономерная реакция организма на изменение внешней и внутренней среды, осуществляемая при участии нервной системы в ответ на раздражение рецепторов. В процессе рефлекторной реакции воспроизводится, изменяется интенсивность или прекращается деятельность тканей, органов или организма в целом. При помощи рефлекса устанавливается адекватное соотношение активности органов в пределах системы, систем в пределах организма, организма в его взаимоотношениях с окружающей средой. Рефлекторный ответ осуществляется за минимальное время и с максимальной безошибочностью.

Представление о рефлекторном акте возникло в первой половине 17 века в трудах Р.Декарта. Он указал, что существует механизм передачи нервного возбуждения от органов чувств на нервы, управляющие мышцами. Считал, что движения у животных подчинены законам отражения. В историю науки Декарт вошел как классический дуалист, противопоставляя материальную отражательную деятельность мозга нематериальной душе, управляющей произвольной деятельностью.

Понятие “рефлекс” ввел в физиологию для обозначения отражательной функции нервной системы чешский ученый Прохазка в конце 18 в. Он показал опытным путем участие в рефлексах структур спинного мозга. Строение рефлекторной дуги гистологическими методами показали Ч.Белла и Ф.Мажанди. В 1863 г. И.М.Сеченов распространил рефлекторный принцип на деятельность головного мозга и высшие психические функции человека, сформулировав эти положения в книге “Рефлексы головного мозга” (“Попытка ввести физиологические основы в психические процессы”). Он понимал рефлекс как целостный поведенческий акт. Психические и физиологические процессы в организме человеке рассматривались И.М.Сеченовым в единстве.

С работами И.П.Павлова связана эпоха в физиологии. И.П.Павлов создал учение о трофической функции нервной системы, выполнил фундаментальные эксперименты по нервной регуляции деятельности органов пищеварения, широко ввел в физиологию хронический эксперимент, обосновал синтетическое направление в физиологии и медицине. Работами в области физиологии нервной системы и высшей нервной деятельности И.П.Павлов развил и расширил рефлекторную теорию, открыл условный рефлекс, разработал правила выработки условных рефлексов, сделал условный рефлекс объективным методом изучения высшей нервной деятельности, создал учение о высшей нервной деятельности, учение о первой и второй сигнальных системах. Работы И.П.Павлова в течение многих лет являлись теоретической основой психиатрии, широко использовались мировой медициной, сохраняют значение и в настоящее время.

Ученик Павлова П.К.Анохин создал и развил учение о функциональных системах и саморегуляции функций.

Морфологическим субстратом рефлекса является рефлекторная дуга. Ее звенья:

1. Афферентное (рецепторы и афферентный нейрон).

2. Центральное (вставочные нейроны и синапсы).

3. Эфферентное (эффекторный нейрон и эффектор).

Простейшая (моносинаптическая) рефлекторная дуга имеет два нейрона: афферентный и эфферентный и один синапс. Рефлекторные дуги большинства рефлексов полисинаптические.

Область тела, раздражение которой вызывает определенный рефлекс, называетсярецептивным полем рефлекса (рефлексогенной зоной). Нервный центр – совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции. Время от начала раздражения рецептора до появления ответной реакции называется латентным периодомрефлекса. Более медленное проведение возбуждения по рефлекторной дуге, чем по нерву, связано с явлением синаптической задержки, необходимой для:

1) выделения медиатора нервным окончанием в ответ на импульс;

2) диффузии медиатора через синаптическую щель к постсинаптической мембране;

3) возникновения возбуждающего постсинаптического потенциала. Вместе с формированием пикового потенциала на мембране нейрона это время составляет 1,5 – 2,0 мс. Время, необходимое для проведения возбуждения по центральной части рефлекторной дуги (с аффекторных нейронов на эффекторные), зависит от количества вставочных нейронов и называется центральным временем рефлекса.

Классификация рефлексов

По биологическому значению: пищевые, половые, оборонительные, локомоторные, позно-тонические, ориентировочные.

В зависимости от расположения рецепторов: экстрарецептивные, интеррецептивные и проприорецептивные.

В зависимости от того, какие отделы мозга необходимы для осуществления рефлекса: спинальные, бульбарные, мезенцефальные, кортикальные.

В зависимости от отдела нервной системы, который реализует ответ: соматические или вегетативные.

По характеру ответной реакции: моторные, секреторные, сосудодвигательные. Моторные рефлексы по длительности ответной реакции разделяются на фазические и тонические.

По приспособительному значению рефлексы делятся на безусловные и условные.

 

Принципы рефлекторной теории И.П.Павлова.

Основными положениями рефлекторной теории И.П.Павлова являются:

1. Принцип детерминизма (причинности: всякое действие организма причинно обусловлено).

2. Принцип анализа и синтеза: любое событие, воздействие, изменение в организме сначала анализируется качественно, количественно, по биологической значимости, а затем, в зависимости от результата анализа, синтезируется ответная реакция.

3. Принцип структурности: все физиологические процессы протекают в определенных и неповреждённых нервных структурах.

Функциональные особенности нейрона.

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы являются нейрон, глиальная клетка, питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает общими свойствами, характерными для возбудимых тканей: раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа.

Физиологическое понятие о нервном центре.

Роль ЦНС в регуляции и координации функций организма. Трофическая роль ЦНС.

Интегративная деятельность ЦНС заключается в объединении и соподчинении всех функциональных элементов организма в целостную систему, обладающую определенной направленностью действия. Интеграция организована на различных уровнях ЦНС.

Первым уровнем интеграции является нейрон, клеточная мембрана которого интегрирует синаптические влияния. Интеграция на уровне нейрона осуществляется взаимодействием возбуждающих (ВПСП) и тормозных (ТПСП) постсинаптических потенциалов, которые генерируются при активации синаптических входов нейрона.

Вторым уровнем интеграции являются элементарные нервные сети. В нейронных сетях происходит дивергенция, иррадиация, конвергенция, суммация, реверберация, окклюзия и облегчение распространения возбуждения.

Третий уровень координации осуществляется в процессе деятельности нервных центров и их взаимодействии. Нервные центры формируются объединением нескольких локальных сетей и представляют собой комплекс элементов, способных осуществить определенный рефлекс или поведенческий акт.

В свою очередь, нервные центры различных отделов мозга объединяются враспределенные системы, которые координируют деятельность организма в целом. Эти системы представляют собой следующий, более высокий уровень интеграции в ЦНС.

Координирующая функция ЦНС выражается не только в усилении и распространении процессов возбуждения, но и в ослаблении излишней функциональной активности нейронов за счет их торможения.

 

Основные физиологические свойства нервных центров

Возбуждающие синапсы образуют в своих окончаниях медиатор, который вызывает развитие возбуждающего постсинаптического потенциала (ВПСП) на постсинаптической мембране. К возбуждающим медиаторам относятся: моноамины (ацетилхолин, дофамин, норадреналин, серотонин, гистамин), АТФ, аминокислоты (глутаминовая, аспарагиновая), нейропептиды (вещество Р, метэнкефалин, лейэнкефалин, эндорфин, нейротензин, АКТГ, ангиотензин, окситоцин, вазопрессин, вазоактивный кишечный пептид, соматостатин, тиролиберин, бомбезин, холецистокининоподобный пептид, карнозин).

2. В продолговатом мозге располагаются волокна, несущие импульсы от головного мозга к периферии и от периферии в головной мозг, волокна, несущие импульсы к мозжечку и от мозжечка, клетки и волокна ретикулярной формации. К собственному аппарату продолговатого мозга относятся ядра и корешки каудальной группы черепно-мозговых нервов, вставочные невроны между различными элементами продолговатого мозга. В П. м. заложены ядра языко-глоточного, блуждающего, добавочного и подъязычного нервов. Двигательные ядра этих нервов представляют собой двигательные центры отдельных мышечных групп головы и шеи, а также являются частью дуги простых рефлексов.

Благодаря вставочным невронам продолговатый мозг служит также местом образования сложных сочетанных движений, автоматических актов дыхания, глотания, жевания, кашля, рвоты. Зависимость дыхания от функции П. м. известна давно, однако достаточно достоверные сведения о локализации дыхательного центра были получены только после введения в экспериментальную практику игольчатых электродов. Путем погружения таких электродов в П. м. на различную глубину было установлено, что при раздражении ретикулярной формации дорсально от олив грудная клетка и диафрагма остаются в состоянии максимального вдоха, а дальнейшее раздражение этой области продолговатого мозга ведет к гибели животного; таким образом, ее можно рассматривать как инспираторный центр. Раздражение области, расположенной еще более дорсально, вызывает экспирационные движения. Следовательно, автоматические дыхательные движения зависят от указанных областей ретикулярной формации П. м. В нормальных условиях эти центры возбуждаются при определенном содержании CO2 в крови; некоторую роль играют и афферентные возбуждения, притекающие через блуждающий нерв.

В ретикулярной формации продолговатый мозг расположен также вазомоторный центр, точная локализация которого не установлена. Этот центр регулирует вазомоторные рефлексы, механизм каротидного синуса и в свою очередь находится под регулирующим влиянием центров межуточного мозга. В ретикулярной формации П. м. замыкаются круги рефлексов рвоты и кашля. Раздражения в области tractus solitarius вызывают рвоту, а разрушение этой области ведет к выпадению чувствительности к апоморфину. В ретикулярной формации продолговатого мозга располагаются также сложные центры, регулирующие мышечный тонус. Исследования показали, что определенные области П. м. влияют на мотоневроны спинного мозга. Эти бульбарные центры в свою очередь находятся под воздействием вышележащих областей мозга. В глубине продолговатого мозга в вентро-латеральной части его ретикулярной формации была выделена область, раздражение которой ведет к торможению спинальных рефлексов, а также двигательных импульсов, идущих от коры мозга. Латерально и несколько дорсально расположена область, раздражение которой ведет к облегчению и усилению спинальных рефлексов, а также делает выраженными подпороговые корковые импульсы, идущие к спинному мозгу.

Клод Бернар своим опытом, получившим название «сахарного укола» в П. м., положил начало многочисленным исследованиям нервной регуляции углеводного обмена. Установлено наличие двух областей — передней, парасимпатической, влияющей через блуждающий нерв на поджелудочную железу, и задней, симпатической, пути которой направляются к надпочечнику. Однако до настоящего времени не выяснено, повреждаются ли при «сахарном уколе» определенные клетки, центры или только пути, идущие из вышележащих отделов головного мозга.

В покрышке верхней части продолговатого мозга располагаются крупные клетки, подвергающиеся ретроградной атрофии при разрушении подъязычных и подчелюстных желез и, следовательно, являющихся клетками, которые влияют на отделение слюны этими железами. Второй центр для околоушных желез находится вблизи nucl. ambiguus. Многочисленные чувствительные импульсы, которые вызывают отделение слюны, проходят через тройничный нерв.

Продолговатый мозг— жизненно важный отдел ЦНС, представляющий собой продолжение спинного мозга. Здесь расположены центры регуляции дыхания (центры вдоха и выдоха), сердечно-сосудистой деятельности, а также центры пищеварительных (слюноотделения, отделения желудочного и поджелудочного сока, жевания, сосания, глотания и др.) и защитных рефлексов (чихания, кашля, рвоты и др.). Повреждение продолговатого мозга приводит к мгновенной смерти в результате прекращения дыхания и остановки сердца.

Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.

Билет 7

1. Нервный центр – это совокупность нервных клеток, регулирующих определенную функцию организма. Эти нервные клетки могут быть расположены компактно в пределах одной анатомической структуры или представлять собой группы нейронов, участвующих в регуляции одной функции, но расположенных во многих отделах ЦНС.

Нейронные сети – система соединённых между собой нейронов мозга животных, человека. Это более широкое понятие, т.к. помимо последовательных цепей сюда включаются параллельные цепи, а также связи между последовательными и параллельными цепями. Нейронные сети – это структуры, выполняющие сложные задачи, например, сенсорные сети выполняют задачу по обработке информации.

Свойства нервных центров во многом определяются структурой и функцией синапсов тех нейронов, которые входят в состав данного нервного центра.

Свойства нервных центров:

1. Одностороннее проведение возбуждения: обусловлено особенностями расположения и характером функционирования синапсов в нервных центрах.

2. Замедление (задержка) распространения возбуждения: обусловлено наличием множества синапсов на пути следования сигнала – может составлять от 0,5 до 2-4 мс в зависимости от количества синапсов, участвующих в работе данного участка нервной цепи.

3. Иррадиация возбуждения – распространение возбуждения от активной клетки на соседние клетки и центры – обусловлено наличием множества ветвлений аксонов.

4. Суммация возбуждений (или торможений): временная и пространственная суммация сигналов, каждый из которых может быть ниже пороговых значений, но в результате суммации может привести к возникновению ПД. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс. Многие нейронные процессы имеют ритмический характер и таким образом могут суммироваться, давая начало надпорогому возбуждению в нейронных цепях. Пространственная суммация заключается в том, что раздельная стимуляция каждого из двух аксонов вызывает образование подпорогового ВПСП, тогда как при при одновременной стимуляции обоих аксонов возникает ПД, обусловленный конвергенцией их влияний. Чаще всего наблюдается пространственно-временная суммация, когда на центральном нейроне сходятся импульсы, поступающие от разных нейронов в достаточно близкие микроинтервалы времени, в результате чего их воздействия суммируются.

5. Тонус нервных центров – наличие постоянного уровня возбуждения в части нейронов нервного центра. Тонус (фоновая активность) объясняется следующими причинами:

а) спонтанной активностью нейронов ЦНС;

б) гуморальными влияниями биологически активных веществ, циркулирующих в крови и влияющих на активность нейронов;

в) импульсацией от различных рефлексогенных зон;

г) суммацией миниатюрных потенциалов, возникающих в результате выделения квантов медиатора из аксона;

д) циркуляцией возбуждения в ЦНС.

6. Трансформация ритма возбуждения – это изменение числа импульсов, возникающих в нейронах центра на выходе относительно числа импульсов, поступающих на вход данного центра. Уменьшение может быть вследствие уменьшения возбудимости за счет процессов пре- и постсинаптического торможения. При большом потоке афферентных влияний, когда уже все нейроны нервного центра возбуждены, дальнейшее увеличение афферентных входов не приводит к увеличению числа возбужденных нейронов.

7. Последействие (например, длительное циркулирование импульсов по «нейронной ловушке»), или «облегчение» проведения. Следовые процессы имеют важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 часа связано с циркуляцией импульсов в нейронных цепях и обеспечивает краткосрочную память. Следовые процессы в спинном мозге длятся несколько секунд или минут, в подкорковых центрах – десятки минут, часы, дни, в КБП – до нескольких десятков лет.

8. Утомляемость нервных центров – наблюдается при частых повторных раздражениях и связана с истощением запасов нейромедиаторов в пресинаптических окончаниях, снижением чувствительности рецепторов.

9. Пластичность (приспособляемость, смещение функций) – способность нервного центра к функциональным перестройкам. Например, способность осуществлять функцию при повреждении части нейронов за счет того, что оставшиеся нейроны замещают (компенсируют) функцию погибших. Другим проявлением пластичности является синаптическое облегчение – улучшение проведения в синапсах после короткого раздражения афферентных путей. Облегчение достигает максимума, когда импульсы поступают с интервалом в несколько миллисекунд. Главная причина этого облегчения, по-видимому, заключается в накоплении ионов кальция в пресинаптическом нервном окончании, когда ионный насос не успевает его выводить. Соответственно увеличивается высвобождение медиаторов, ускоряется их синтез, увеличивается активность рецепторов. Следующим проявлением пластичности является образование временных связей, которые обеспечивают образование условных рефлексов.

10. Высокая чувствительность к действию различных фармакологических веществ.

2. Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей - она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга,

то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук - поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Билет 8

1. Исходя из физиологических представлений, нервный «центр» может располагаться на разных уровнях ЦНС и участвовать в регуляции какой-либо фиpиологической функции (дыхание, пищеварение и т.д.) или в совершении какого-либо рефлекса.

К функциональным свойствам рефлекторных центров относятся: возбуждения или торможения в центральной нервной системе">иррадиация возбуждения; конвергенция и дивергенция; суммирование; синаптическое облегчение и окклюзия; трансформация ритма, реверберация возбуждения; тоническое состояние центров, их быстрая утомляемость, большая чувствительность к недостатку кислорода и к действию некоторых ядов.

 

Иррадиация возбуждения

Активное распространение возбуждения в ЦНС, особенно при сильном и длительном раздражении, получило название иррадиации. Возможность иррадиации в ЦНС обусловлена наличием в ней многочисленных ответвлений отростков (аксонов, дендритов) нервных клеток и цепей интернейронов, которые соединяют между собой различные нервные центры (благодаря этому возбуждение распространяется определенными путями и с определенной последовательностью). Важную роль в иррадиации возбуждения в структурах мозга играет ретикулярная формация.

 

Усиление раздражения или повышение возбудимости ЦНС сопровождается усилением иррадиации возбуждения в ней. Тормозные нейроны и синапсы препятствуют иррадиации возбуждения или ограничивают ее. При введении стрихнина, блокирующего постсинаптическое торможение, возникает сильное возбуждение ЦНС, которое сопровождается судорогами всех скелетных мышц. Иррадиация может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливает распространение возбуждения. Это бывает при эпилепсии.

 

Конвергенция возбуждения

На каждом из нейронов ЦНС конвергирует (сходятся) различные афферентные волокна. Таких афферентных входов для большинства нейронов много десятков и даже тысяч. Так, на мотонейронах заканчиваются в среднем 6000 коллатералей аксонов, которые поступают от периферических рецепторов и различных структур мозга, образуя возбуждающие и тормозные синапсы. Это такое универсальное явление, можно говорить о принципе конвергенции в нейронах и их связях. Благодаря этому явлению в один и тот же нейрон одновременно поступают многочисленные и разнообразные потоки возбуждений, которые затем подлежат сложной обработке и перекодируются и формируются в единое возбуждение - аксонноу, что идет к следующему звену нервной сетки. Конвергенция возбуждения на нейроне является универсальным фактором его интегративной деятельности.

 

Различают мультисенсорную, мультибиологическую и сенсорно-биологическую формы конвергенции. В первом случае на нейрон поступают сигналы различной сенсорной модальности (зрительные, слуховые, болевые и др.), во втором - потоки возбуждений различной биологической модальности (пищевые, половые и др.), в третьем - сигнализация (зрительная, пищевая) и другие.

Дивергенция возбуждения

Дивергенция (расхождение) возбуждения - способность одиночного нейрона устанавливать в многочисленных синаптических связях с различными нервными клетками. Например, афферентные волокна периферических рецепторов, входя в спинной мозг в составе задних корешков, дальше разветвляются на многочисленные коллатерали, которые идут к спинальным нейронам. Благодаря дивергенции одна и та же нервная клетка может принимать участие в организации различных реакций и контролировать большое количество нейронов. Одновременно каждый нейрон может обеспечивать широкое перераспределение импульсов, что ведет к иррадиации возбуждения. Конвергенция и дивергенция взаимно связаны.

Реверберация возбуждения

Циркуляция возбуждения замкнутыми нейронами и их цепями в ЦНС называется реверберацией. Возбуждение одного из нейронов, входящих в эту цепь, передается на другой (или другие), а коллатералям аксонов снова возвращается к нервной клетки и т.д.

 

Реверберация возбуждения наблюдается в так называемом рефлекторном последействии, когда рефлекторный акт заканчивается не сразу после прекращения, а через некоторый (иногда длительный) период, а также играет определенную роль в механизмах кратковременной (оперативной) памяти. Сюда же относится корково-подкорковая реверберация, которая играет важную роль в высшей нервной деятельности (поведении) человека и животных.

Тонус нервных центров

Многие центры, т.е. нейронов, которые их составляют, постоянно генерируют нервные импульсы. Они поступают от эффекторов, что свидетельствует о существовании некоторого постоянного тонического возбуждения, т.е. тонуса нервных центров.

Указанное свойство нервного центра проще рассмотреть на примере объединения мотонейронов (мотонейронного пула).

При раздражении афферентного мышечного нерва надпороговым одиночным стимулом мотонейрона, иннервирующего соответствующие мышцы, возникает моносинаптический ВПСП. В зависимости от числа синаптических контактов и уровня поляризации часть мотонейронов деполяризуется до порогового уровня, и в них происходит импульсивный разряд. Эти мотонейроны составляют так называемую зону разряда. Вторая (обычно значительно большая) часть мотонейронов этого пула не достигает критического уровня деполяризации и не разряжается, но на время развития ВПСП, как правило, увеличивается возбудимость этих «молчаливых» нейронов. Эти нейроны составляют так называемую подпороговую зону нервного центра.

Подпороговая зона увеличивается при усилении афферентного раздражения гораздо быстрее, чем зона разряда. Причем при любой интенсивности раздражения подпорогового возбуждения нейронов всегда больше, чем тех, что разряжаются, т.е. соответствуют импульсной активности (соотношение примерно 80:20).

Как в свете этих данных представить себе тонус нервных центров? Очевидно, что тонус центров определяется соотношением нейронов, которые «молчат», и нейронов, которые разряжаются, т.е. нейронов подпороговой зоны и зоны разряда. Если схематично изобразить нервный центр, который состоит из 50 нейронов, то тонус такого центра намного выше, когда импульсная активность наблюдается у 25 нейронах из 50, чем тогда, когда раздражаются только 10 клеток.

Можно допустить, что чем выше тоническая активность центра, т.е. чем больше нейронов генерирует потенциалы действия в данный момент, тем меньше возможности центра развивать рефлекторную деятельность в ответ на дополнительное раздражение. Центр слева находится в состоянии высокого тонуса, но у него только половина нейронов может «включиться» в ответ на дополнительные стимулы. Центр справа имеет низкую тоническую активность, но у него больше резервов для «включения» в рефлекторные реакции. Действительно, центры с постоянным тонусом (например, ядро блуждающего нерва) имеют тем меньшую рефлекторную возбудимость, чем выше их тоническая активность.

 

Нервные центры легко утомляются. Это проявляется постепенным снижением и даже полным прекращением импульсных разрядов при длительном раздражении афферентных волокон. В то же время раздражение эфферентного нерва (например, мышечного) еще продолжает вызывать сокращение мышцы. Если учесть, что нерв практически не устает, то усталость, которая развивается, прежде локализуется в нервном центре. Усталость центров связана главным образом с резким нарушением синаптической передачи (уменьшение запасов и синтеза медиатора, снижение чувствительности к медиатору постсинаптической мембраны, уменьшение энергетических резервов нервной клетки и др.).

 

Чувствительность нервных центров к гипоксии. Функции нервных центров зависят от снабжения их кислородом. Нуждаясь в большом количестве кислорода (мозг человека потребляет примерно 40-50 мл кислорода в 1 мин, т.е. 1/6-1/8 часть кислорода, необходимого организму в состоянии покоя), нервные клетки, особенно высших отделов ЦНС, очень чувствительны к его недостатку (гипоксии). Полное или частичное прекращение кровообращения мозга ведет к тяжелым нарушениям его деятельности и к гибели нервных клеток. Даже кратковременное резкое падение кровяного давления в мозгу вызывает у человека немедленную потерю сознания. Клетки коры большого мозга подлежат необратимым изменениям и погибают уже через 5-6 мин после полного прекращения кровообращения, при температуре 37 ° С функции клеток ствола головного мозга и спинного мозга нарушаются соответственно через 15 и 30 мин.

 

Нервные клетки и синапсы обладают избирательной чувствительностью к некоторым ядам, в частности к стрихнину, морфину, алкоголю, наркотическим веществам (эфир, хлороформ, барбитураты) и другие, их изучением занимается нейрофармакология.

2. Помимо областей коры большого мозга, стимулирующих мышечные сокращения, для нормальной двигательной функции важны также две другие мозговые структуры: мозжечок и базальные ганглии. Однако ни одна из этих структур не может регулировать движения самостоятельно, они всегда функционируют в тесной связи с другими системами двигательного контроля. Мозжечок в основном играет роль в синхронизации двигательных функции и обеспечении быстрого плавного перехода от одного мышечного движения к следующему. Он также помогает регулировать интенсивность мышечных сокращений при изменениях мышечной нагрузки, а также обеспечивает необходимое текущее взаимодействие между группами мышц-агонистов и мышц-антагонистов. Базальные ганглии помогают планировать и осуществлять сложные двигательные программы, регулируя относительную интенсивность и направление отдельных движений, а также обеспечивая согласование множества последовательных и параллельных движений для выполнения специфических сложных двигательных задач. В наших следующих статьях будут изложены основные механизмы функции мозжечка и базальных ганглиев и рассмотрены общие мозговые механизмы, лежащие в основе сложной координации совокупной двигательной активности. Мозжечок, долго называли немой зоной головного мозга, в основном потому, что электрическое раздражение мозжечка не вызывает каких-либо осознанных ощущений и редко вызывает какую-либо мышечную активность. Удаление мозжечка, однако, ведет к резкому нарушению движений тела. Особенно важен мозжечок во время выполнения быстрых движений, например при беге, печатании на пишущей машинке, игре на пианино и даже при разговоре. Потеря этой области мозга может вызвать почти абсолютную дискоординацию этих движений, несмотря на то, что при этом не возникают параличи мышц. Почему же мозжечок так важен, если он не имеет возможности непосредственно вызывать мышечные сокращения? Ответ состоит в том, что мозжечок обеспечивает последовательность движений, а также контролирует и корректирует двигательную активность организма во время ее осуществления так, чтобы эта активность соответствовала управляющим сигналам двигательной коры и других отделов мозга. Мозжечок постоянно получает обновленную информацию о желательной последовательности сокращений от областей мозга, контролирующих движения. Он также получает постоянную сенсорную информацию от периферических частей тела, сообщающую о последовательных изменениях состояния каждой части тела и ее положении, скорости движения, о силах, действующих на нее, и т.д. На основании сенсорной информации, полученной по механизму обратной связи с периферии, мозжечок имеет возможность сравнивать реальные движения с движениями, запланированными двигательной системой. Если между планом и реальностью соответствия нет, сразу же назад к двигательной системе передаются подсознательные корректирующие сигналы для того, чтобы увеличить или уменьшить уровни активации определенных мышц. Кроме того, мозжечок помогает коре большого мозга планировать следующее последовательное движение заранее, за долю секунды до его начала, когда еще выполняется текущее движение, что способствует плавному переходу от одного движения к следующему. Мозжечок также умеет «учиться» на своих ошибках, т.е. если движение не выполняется точно так, как задумано, мозжечковый контур обучается усиливать или ослаблять это движение в следующий раз. Такая возможность связана с изменениями возбудимости соответствующих нейронов мозжечка, что позволяет последующим мышечным сокращениям лучше соответствовать запланированным движениям.

Мозжечок, или малый мозг, представляет собой надсегментарную структуру, расположенную над продолговатым мозгом и мостом, позади больших полушарий мозга. Мозжечок состоит из нескольких частей, различных по происхождению в эволюции позвоночных животных.

У человека мозжечок состоит из двух полушарий, находящихся по бокам от червя. К филогенетически более древней части мозжечка млекопитающих относят переднюю долю и флоккулонодулярную часть задней доли. Эти структуры мозжечка преимущественно связаны со спинным мозгом и вестибулярным аппаратом, тогда как полушария в основном получают информацию от мышечных и суставных рецепторов, а также от зрительного и слухового анализаторов. На рис. 5.16 представлена схема мозжечка млекопитающего (см. приложение 6), отражающая плотность вестибулярных, проприоцептивных (от мышц, сухожилий и суставов) и корковых афферентных проекций в различные зоны мозжечка. Согласно этой классификации кора мозжечка делится на три области:

1) архицеребеллум (старый мозжечок) – флоккулонодулярная доля (долька X); в ней оканчиваются преимущественно вестибулярные афференты и волокна от вестибулярных ядер; вестибулярные волокна проецируются также частично в язычок (lingula – долька I) и каудальную часть втулочки (uvula – долька IX), которые обычно относят также к архицеребеллуму;

2) палеоцеребеллум (древний мозжечок) включает переднюю долю (дольки II–V), простую дольку (долька VI) и заднюю часть корпуса мозжечка (дольки VIII–IX); палеоцеребеллум тесно связан со спинным мозгом, а также имеет двусторонние связи с сенсомоторной областью коры больших полушарий;

3) неоцеребеллум (новый мозжечок) включает среднюю часть корпуса мозжечка (долька VII и частично дольки VI и VIII), которая получает информацию от коры больших полушарий, а также от слуховых и зрительных рецепторов. Обратите внимание, что основная часть полушарий мозжечка принадлежит новому мозжечку, который лучше всего развит у человека.

В толще мозжечка находятся три пары ядер: зубчатое, расположенное латерально; ядро шатра – медиально; пробковидное и округлое ядра – между ними.

 

Билет 9

Принцип сопряженного торможения или реципрокности

Примером реципрокности может быть регуляция спинным мозгом противоположных по функциональному назначению мышц конечностей. Так, при возбуждении мотонейронов, иннервирующих мышцы сгибатели правой ноги, тормозятся мотонейроны мышц разгибателей этой ноги и возбуждаются мото­нейроны мышц разгибателей левой ноги. Формирующийся цепной характер рефлексов вслед за этим вызывает возбуждение мотоней­ронов разгибателей правой ноги и реципрокно — торможение мо­тонейронов сгибателей правой ноги и возбуждение мотонейронои сгибателей левой ноги. Таким образом, реципрокные взаимоотноше­ния между указанными рефлексами обеспечивают цепной шагатель­ный рефлекс. Реципрокные взаимоотношения имеют место и между рефлексами вдоха и выдоха, когда возбуждение центра вдоха тор­мозит центр выдоха и наоборот, что обеспечивает ритмичную смену фаз в процессе внешнего дыхания.

Принцип доминанты

Принцип доминанты был открыт А.А.Ухтомским. Доминантой на­зывают общий принцип деятельности нервной системы, проявля­ющийся в виде господствующей в течение определенного времени системы рефлексов, реализуемых доминирующими центрами, кото­рые подчиняют себе или подавляют деятельность других нервных центров и рефлексов. Нейроны доминирующих центров приобретают более низкий уровень критической деполяризации мембран, т.е. становятся более возбудимыми, и способны эффективнее осущест­влять пространственную и временную суммацию нервных импульсов. Синаптическое проведение к этим нейронам облегчено и поэтому они могут возбуждаться и за счет «посторонних» импульсов от не имеющих прямых связей с доминирующими центрами информаци­онных каналов. Вследствие суммации многочисленных ВПСП воз­буждение нейронов как и число возбужденных клеток в доминиру­ющем центре нарастает и осуществляемые им рефлекторные реак­ции легко реализуются. Преобладание рефлексов доминирующего центра над другими рефлекторными актами становится особенно выраженным, поскольку через систему вставочных нейронов доми­нирующий центр сопряженно тормозит другие центры и текущие рефлексы. Принцип доминанты позволяет концентрировать внима­ние и строить поведение для достижения определенной намеченной цели.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.