МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Методы регистрации рентгеновского излучения





Регистрация рентгеновского излучения. Для регистрации Р. и. используют чаще всего спец. рентг. фотоплёнку (см. Рентгенограмма ).Т. к. жёсткое Р. и. обладает значит. проницаемостью, фотоплёнка содержит повыш. кол-во AgBr и выполняется двусторонней. Для определения отношения интенсивностей линий спектра или распределений интенсивностей в дифракц. картине по их фотоснимку используют микрофотометры и сенситометрич. кривую зависимости логарифмич. фотоплотности от интенсивности Р. и. При больших интенсивностях их измеряют с помощью ионизационной камеры, при средних и малых интенсивностях - с помощью к--л. пропорционального детектора. Амплитуда регистрируемого сигнала в последних пропорциональна энергии фотона, что позволяет использовать эти приборы в сочетании с многоканальным амплитудным анализатором импульсов в качестве ронтг. спектрометров. Для регистрации Р. и. служат сцинтилляц. счётчики [при < 0,3 нм; кристаллы Nal(Tl), относит. разрешение ~50% (в области нм)], пропорциональные счётчики отпаянного или проточного типа [при 0,1 < < 10 нм; относит. разрешение ~15% (в области нм)], вторично-электронные или каналовые электронные умножители открытого типа с входным фотокатодом (при > 1 нм), полупроводниковые детекторы [при < 1 нм; кристаллы Si(Li) или Ge(Li), относит, разрешение ~2,5% (в области ~ 0,15 нм)]; см. Детекторы частиц. Используют также координатно-чувствнтельные детекторы типа микроканальных пластин или приборов с зарядовой связью, с помощью к-рых линейчатый спектр можно зарегистрировать на ленте самописца в виде записи с правильным относит. расположением линий и правильными относит. амплитудами этих линий.

Природа УЗ и его свойства

УЛЬТРАЗВУК -упругие волны с частотами прибл. от (1,5-2)·104 Гц (15-20 кГц) до 109 Гц (1 ГГц); область частот упругих волн от 10 до 1012-1013 Гц принято называть гиперзвуком .По частоте У. удобно подразделять на 3 диапазона: У. низких частот (1,5·104-105 Гц), У. средних частот (105-107 Гц), область высоких частот У. (107 - 109 Гц). Каждый из этих диапазонов характеризуется своими специфич. особенностями генерации, приёма, распространения и применения.

Свойства ультразвука и особенности ею распространения. По физ. природе У. представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и УЗ-волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн (так, длины волн У. высоких частот в воздухе составляют 3,4·10-3-3,4·10-5см, в воде-1,5·10-2-1,5·10-4см, в стали - 5·10-2- 5·10-4см) имеет место ряд особенностей распространения У.

Малая длина УЗ-волн позволяет в ряде случаев исследовать их распространение методами геометрической акустики. Это даёт возможность рассматривать отражение, преломление, а также фокусировку с помощью лучевой картины.

Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика ).Характерная особенность распространения У. в многоатомных газах и во MH. жидкостях-существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука ).Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот.



Др. особенность У.- возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропорц. квадрату частоты. УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы); поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты; вообще говоря, она мала и составляет долю % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавитация. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов; в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см2. На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см2 могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич. кавитация широко применяется в технол. процессах; при этом пользуются У. низких частот.

10. Получение ультразвука и приёмники

Генерация ультразвука. Для излучения У. служат разнообразные устройства, к-рые могут быть разделены на 2 группы-механические и эл--механические. Механич. излучатели У. (воздушные и жидкостные свистки и сирены) отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрич. энергии высокой частоты. Их недостатки-широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет использовать их для контрольно-измерит. целей; они применяются гл. обр. в промышленной УЗ-технологии и частично как средства сигнализации.

Осн. излучателями У. являются эл--механические, преобразующие электрич. колебания в механические. В диапазоне У. низких частот возможно использование эл--динамич. и эл--статич. излучателей. Широкое применение в этом диапазоне частот нашли магнитострикционные преобразователи, основанные на эффекте магнитострикции. Для излучения У. средних и высоких частот служат гл. обр. пьезоэлектрич. преобразователи, использующие явление пьезоэлектричества. Для увеличения амплитуды колебаний и излучаемой в среду мощности, как правило, применяются резонансные колебания магнитострикционных и пьезоэлектрич. элементов на их собств. частоте.

Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области ср. частот чрезвычайно широк; интенсивности от 10-14-10-15Вт/см2 до 0,1 Вт/см2 считаются малыми. Для достижения больших интенсивностей, к-рые могут быть получены с поверхности излучателя, пользуются фокусировкой У. (см. Фокусировка звука ).Так, в фокусе параболоида, внутр. стенки к-рого выполнены из мозаики кварцевых пластинок или из пьезокерамики, на частоте 0,5 МГц удаётся получать в воде интенсивности У. > 105 Вт/см2. Для увеличения амплитуды колебаний твёрдых тел в диапазоне У. низких частот часто пользуются стержневыми УЗ-концентраторами (см. Концентратор а к у с т и ч е с к и й), позволяющими получать амплитуды смещения 10-4 см.

Приём и обнаружение ультразвука. Вследствие обратимости электрич. и пьезоэлектрич. эффектов эти преобразователи используются и для приёма У. Для изучения УЗ-поля можно пользоваться и оптич. методами; У., распространяясь в к--л. среде, вызывает изменение её оптич. показателя преломления, что позволяет визуализировать звуковое поле, если среда прозрачна для света. Совокупность уплотнений и разрежений, сопровождающая распространение УЗ-волны, представляет собой своеобразную решётку, дифракцию световых волн на к-рой можно наблюдать в оптически прозрачных телах. Дифракция света на ультразвуке лежит в основе смежной области акустики и оптики- акустооптики, к-рая получила развитие после возникновения газовых лазеров непрерывного действия.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.