Физический и электрический интерфейсы Стандарт IEEE 1284 определяет физические характеристики приемников и передатчиков сигналов, которые по уровням совместимы с ТТЛ. Спецификации стандартного порта не задавали типов выходных схем, предельных значений величин нагрузочных резисторов и емкости, вносимой цепями и проводниками. На относительно невысоких скоростях обмена разброс этих параметров не вызывал проблем совместимости. Однако расширенные (функционально и по скорости передачи) режимы требуют четких спецификаций. IEEE 1284 определяет два уровня интерфейсной совместимости. Первый уровень (Level I) определен для устройств медленных, но использующих смену направления передачи данных. Второй уровень (Level II) определен для устройств, работающих в расширенных режимах с высокими скоростями и длинными кабелями. Стандарт IEEE 1284 определяет три типа используемых разъемов. Типы A (DB-25) и В (Centronics-36) характерны для традиционных кабелей подключения принтера, тип С – новый малогабаритный 36-контактный разъем. Традиционные интерфейсные кабели имеют от 18 до 25 проводов, в зависимости от числа проводников цепи GND. Эти проводники могут быть как перевитыми, так и нет. К экранированию кабеля жестких требований не предъявлялось. Такие кабели вряд ли будут надежно работать на скорости передачи 2 Мбайт/с и при длине более 2 м. Стандарт IEEE 1284 регламентирует свойства кабелей. 1. Все сигнальные линии должны быть перевитыми с отдельными обратными (общими) проводами. 2. Каждая пара должна иметь импеданс 62±6 Ом в частотном диапазоне 4-16 МГц. 3. Уровень перекрестных помех между парами не должен превышать 10 %. 4. Кабель должен иметь экран (фольгу), покрывающий не менее 85 % внешней поверхности. На концах кабеля экран должен быть окольцован и соединен с контактом разъема. Кабели, удовлетворяющие этим требованиям, маркируются надписью «IEEE Std 1284-1994 Compliant». Они могут иметь длину до 10 метров. Системная поддержка LPT-порта включает поиск установленных портов и сервисы печати. В процессе начального тестирования POST BIOS проверяет наличие параллельных портов по адресам 3BCh, 378h и 278h и помещает базовые адреса обнаруженных портов в ячейки BIOS Data Area 0:0408h, 040Ah, 040Ch, 040Eh. Эти ячейки хранят адреса портов LPT1-LPT4, нулевое значение адреса является признаком отсутствия порта с данным номером. В ячейки 0:0478, 0479, 047А, 047В заносятся константы, задающие тайм-аут для этих портов. Поиск портов обычно ведется по базовому адресу (в регистр данных предполагаемого порта) выводится тестовый байт (AAh или 55h), затем производится ввод по тому же адресу. Если считанный байт совпал с записанным, предполагается, что найден LPT-порт; его адрес помещается в ячейку BIOS Data Area. Базовые адреса портов могут быть впоследствии изменены программно. Адрес порта LPT4 система BIOS самостоятельно установить не может, поскольку в списке стандартных адресов поиска имеются только три вышеуказанных. Обнаруженные порты инициализируются – записью в регистр управления формируется и снимается сигнал Init#, после чего записывается значение 0Ch, соответствующее исходному состоянию сигналов интерфейса. В некоторых случаях сигнал Init# активен с момента аппаратного сброса до инициализации порта при загрузке ОС. Это можно заметить по поведению включенного принтера во время перезагрузки компьютера – у принтера надолго гаснет индикатор On-Line. Следствие этого явления — невозможность распечатки экранов (например, параметров BIOS Setup) по нажатию клавиши Print Screen до загрузки ОС. Параллельный порт и РпР.Большинство современных периферийных устройств, подключаемых к LPT-nopту, поддерживает стандарт 1284 и функции РпР. Для поддержки этих функций компьютером с аппаратной точки зрения достаточно иметь контроллер интерфейса, соответствующий стандарту 1284. Устройства с поддержкой РпР распознаются ОС на этапе ее загрузки, если, конечно же, они подключены к порту интерфейсным кабелем и у них включено питание. Если ОС Windows обнаруживает подключенное устройство РпР, отличающееся от того, что прописано в ее реестре для данного порта (или просто новое устройство), она пытается установить требуемые для устройства драйверы из дистрибутива ОС или из комплекта поставки нового устройства. Если Windows не желает замечать вновь подключенного устройства РпР, это может свидетельствовать о неисправности порта или кабеля. Система РпР не работает, если устройство подключается дешевым «не двунаправленным» кабелем, у которого отсутствует связь по линии Selecting (контакт 17 порта LPT и контакт 36 разъема Centronics). Применение LPT-порта.Обычно LPT-порт используют для подключения принтера, однако этим его применение не исчерпывается. Для связи двух компьютеров по параллельному интерфейсу применяются различные кабели в зависимости от режимов используемых портов. Самый простой и медленный – полубайтный режим, работающий на всех портах. Для этого режима в кабеле достаточно иметь 10 сигнальных и один общий провод. Высокоскоростная связь двух компьютеров может выполняться и в режиме ЕСР (режим ЕРР неудобен, поскольку требует синхронизации шинных циклов ввода-вывода двух компьютеров). Подключение сканера к LPT-порту эффективно, только если порт обеспечивает, хотя бы двунаправленный режим (Bi-Di), поскольку основной поток – ввод. Лучше использовать порт ЕСР, если этот режим поддерживается сканером (или ЕРР, что маловероятно). Подключение внешних накопителей (Iomega Zip Drive, CD-ROM и др.), адаптеров ЛВС и других симметричных устройств ввода-вывода имеет свою специфику. В режиме SPP наряду с замедлением работы устройства заметна принципиальная асимметрия этого режима: чтение данных происходит в два раза медленнее, чем запись. Применение двунаправленного режима (Bi-Di или PS/2 Туре 1) устранит эту асимметрию – скорости сравняются. Только перейдя на ЕРР или ЕСР, можно получить нормальную скорость работы. В режиме ЕРР или ЕСР подключение к LPT-порту почти не уступает по скорости подключению через ISA-контроллер. Это справедливо и при подключении устройств со стандартным интерфейсом шин к LPT-портам через преобразователи интерфейсов (например, LPT – IDE, LPT – SCSI). Конфигурирование LPT-портов.Управление параллельным портом разделяется на два этапа – предварительное конфигурирование (Setup) аппаратных средств порта и текущее (оперативное) переключение режимов работы прикладным или системным ПО. Оперативное переключение возможно только в пределах режимов, разрешенных при конфигурировании. Этим обеспечивается возможность согласования аппаратуры с ПО и блокирования ложных переключений, вызванных некорректными действиями программы. Конфигурирование LPT-порта зависит от его исполнения. Порт, расположенный на плате расширения (мультикарте), устанавливаемой в слот ISA или ISA+VLB, конфигурируется джамперами на самой плате. Порт на системной плате конфигурируется через BIOS Setup. Ниже перечислены параметры, подлежащие конфигурированию. 1. Базовый адрес – 3BCh, 378h или 278h. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логические имена LPT1, L PT2, L РТЗ. Адрес ЗВСh имеет адаптер порта, расположенный на плате MDA или HGC. Большинство портов по умолчанию конфигурируется на адрес 378h и может переключаться на 278h. 2. Используемая линия запроса прерывания: для LPТ – IRQ 7,для LPT2 – IRQ5. Традиционно прерывания от принтера не задействуются, и этот дефицитный ре-сурс можно сэкономить. Однако при использовании скоростных режимов ЕСР (или Fast Centronics) работа через прерывания может заметно повысить производительность и снизить загрузку процессора. 3. Использование канала DMA для режимов ЕСР и Fast Centronics – разрешение и номер канала DMA. 4. Режимы работы порта: SРР, PS/2, он же Bi-Directional, Fast Centronics, ЕРР, ЕСР. Принтеры и сканеры могут пожелать режима ЕСР. Windows (3.x, 9х и NT) имеет системные драйверы для этого режима. В среде DOS печать через ЕСР поддерживается только специальным загружаемым драйвером. Сетевые адаптеры, внешние диски и CD-ROM, подключаемые к параллельному порту, могут использовать режим ЕРР. Неисправности и тестирование параллельных портов.Тестирование параллельных портов разумно начинать с проверки их наличия в системе. Список адресов установленных портов появляется в таблице, выводимой BIOS на экран перед загрузкой ОС. Список можно посмотреть и с помощью тестовых программ или прямо в BIOS Data Area с помощью отладчика. Если BIOS обнаруживает меньше портов, чем установлено физически, скорее всего, двум портам присвоен один и тот же адрес. При этом работоспособность ни одного из конфликтующих портов не гарантируется: они будут одновременно выводить сигналы, но при чтении регистра состояния конфликт на шине, скорее всего, приведет к искажению данных. Программное тестирование порта без диагностической заглушки (Loop Back) не покажет ошибок, поскольку при этом читаются данные выходных регистров, а они у всех конфликтующих (по отдельности исправных портов) совпадут. Именно такое тестирование производит BIOS при проверке на наличие портов. Разбираться с такой ситуацией следует, последовательно устанавливая порты и наблюдая за адресами, появляющимися в списке. Если физически установлен только один порт, a BIOS его не обнаруживает, то либо порт отключен при конфигурировании, либо он вышел из строя (скорее всего из-за нарушений правил подключения). Тестирование портов с помощью диагностических программ позволяет проверить выходные регистры, а при использовании специальных заглушек – и входные линии. Поскольку количество выходных линий порта (12) и входных (5) различно, то полная проверка порта с помощью пассивной заглушки принципиально невозможна. Разные программы тестирования требуют применения разных заглушек (рис. 29).  Рис. 29. Схема заглушки для тестирования LPT-порта: а – для Checklt, б – для Norton Diagnostics Большинство неприятностей при работе с LPT-портами доставляют разъемы и кабели. Для проверки порта, кабеля и принтера можно воспользоваться специальными тестами из популярных диагностических программ (Checklt, PCCheck и т. п.). Можно попытаться просто вывести на принтер какой-либо символьный файл. 1. Если вывод файла с точки зрения DOS проходит (копирование файла на устройство с именем LPTn или PRN совершается быстро и успешно), а принтер (исправный) не напечатал ни одного символа – скорее всего, это обрыв (неконтакт в разъеме) цепи Strobe*. 2. Если принтер находится в состоянии On Line, а появляется сообщение о его неготовности, причину следует искать в линии Busy. 3. Если принтер, подключенный к порту, в стандартном режиме (SPP) печатает нормально, а при переходе в режим ЕСР начинаются сбои, следует проверить кабель – соответствует ли он требованиям IEEE 1284. Дешевые кабели с неперевитыми проводами нормально работают на скоростях 50-100 Кбайт/с, но при скорости 1-2 Мбайт/с, обеспечиваемой ЕСР, имеют полное право не работать, особенно при длине более 2 м. 4. Если при установке драйвера PnP-принтера появилось сообщение о необходимости применения «двунаправленного кабеля», проверьте наличие связи контакта 17 разъема DB-25 с контактом 36 разъема Centronics. Хотя эта связь изначально предусматривалась, в ряде кабелей она отсутствует. 5. Если принтер искажает информацию при печати, возможен обрыв (или замыкание) линий данных. В этом случае удобно воспользоваться файлом, содержащим последовательность кодов всех печатных символов. Если файл печатается с повтором некоторых символов или их групп, по периодичности повтора можно легко вычислить оборванный провод данных интерфейса. Аппаратные прерывания от LPT-порта используются не всегда. Даже DOS-программа фоновой печати PRINT работает с портом по опросу состояния, а ее обслуживающий процесс запускается по прерыванию от таймера. Поэтому неисправности, связанные с цепью прерывания от порта, проявляются не часто. Однако по-настоящему многозадачные ОС стараются работать с портом по прерываниям. Протестировать линию прерывания можно, только подключив к порту ПУ или заглушку. Если к порту с неисправным каналом прерывания подключить адаптер локальной сети, то он, возможно, будет работать, но с очень низкой скоростью: на любой запрос ответ будет приходить с задержкой в десятки секунд – принятый из адаптера пакет будет приниматься не по прерыванию (сразу по приходу), а по внешнему тайм-ауту. Порядок выполнения работы 1. Подсоединит устройство (специальную плату) для LPT-порта к выключенному компьютеру и включит его ЭВМ. Устройство для LPT-порта представлено на рис.30.  Рис.30 устройство для тестирования LPT-порта. На плате устройства имеются 17 светодиодов. Каждый из них соответствует определенному биту LPT-порта. 8 красных светодиодов (в нижней части) – регистр Data, 4 зеленых в верхнем левом углу – регистр Control и 5 зеленых справа – регистр Status. 2. Применить приложения для передачи данных через LPT-порт. Для этого, с сайта http://valery-us4leh.narod.ru/XpCoding/XPlpt.html было скачать приложение, графический интерфейс которого представлен на рис. 31.  Рис.31. Графический интерфейс приложения. 3. Для организации передачи данных от ЭВМ к устройству необходимо запустить приложение, представленное в предыдущем пункте, и выставить необходимое число в двоичном коде, нажимая на соответствующие кнопки под индикаторами (рис. 31). В этот момент на светодиодах, отвечающих за регистр Data, высветится двоичный сигнал, эквивалентный числу, заданному в программе. Контрольные вопросы: 1. Для каких целей применяется LPT-порт? 2. Какова структура и временные параметры LPT-порта? 3. Как происходит передача данных по протоколу Centronics? 4. Какие возможны режимы обмена данными через параллельный порт согласно IEEE 1284? 5. Что обеспечивает и как происходит передача данных по протоколу Nibble Mode? 6. Перечислите особенности протокола ЕРР? 7. Перечислите особенности протокола ЕСР? 8. Как организована прямая и обратная передача данных по протоколу ЕСР? 9. Как организовано согласование режимов IEEE 1284? 10. Как организована системная поддержка LPT-порта? 11. Как происходит конфигурирование LPT-портов? 12. Как протестировать параллельный порт? Лабораторная работа №5 Тема:Интерфейсы USB и IEEE-1394Fire Wire. Соединение трех ЭВМ с использованием LAN и USB Цель работы:Изучить интерфейсы USB и IEEE-1394Fire Wire. Объединить три компьютера в сеть по интерфейсам USB 2.0 и LAN и обеспечить передачу информации между всеми компьютерами. Теоретические сведения Последовательные шины USB и FireWire позволяют объединять множество устройств, используя всего 1-2 пары проводов. Функциональные возможности этих шин гораздо шире, чем у традиционных интерфейсов локальных сетей – USB и Fire Wire способны передавать изохронный трафик аудио- и видеоданных. Последовательные шины по своей организации сильно отличаются от параллельных. В последовательных шинах нет отдельных линий для данных, адреса и управления – все протокольные функции приходится выполнять, пользуясь одной или двумя (в Fire Wire) парами сигнальных проводов. Это накладывает отпечаток на построение шинного протокола, который в последовательных шинах строится на основе пересылок пакетов – определенным образом организованных цепочек, бит. В терминологии USB пакеты и кадры имеют несколько иную трактовку, нежели в сетях передачи данных. В параллельных шинах имеются возможности явной синхронизации интерфейсной части ведущих и ведомых устройств; исполнение каждого шага протокола обмена может быть подтверждено, и, при необходимости, некоторые фазы обмена могут продлеваться по «просьбе» не успевающего устройства. В последовательных шинах такой возможности нет – пакет пересылается целиком, а синхронизация возможна только по принимаемому потоку бит. Эти и другие особенности сближают последовательные шины с локальными сетями передачи данных. Последовательные шины Fire Wire и USB, имея общие черты, являются, тем не менее, существенно различными технологиями. Обе шины обеспечивают простое подключение большого числа ПУ (127 для USB и 63 для FireWire), допуская коммутации и включение/выключение устройств при работающей системе. По структуре топология обеих шин достаточно близка, но FireWire допускает большую свободу и пространственную протяженность. Хабы USB входят в состав многих устройств и для пользователя их присутствие зачастую незаметно. Обе шины имеют линии питания устройств, но допустимая мощность для Fire Wire значительно выше. Обе шины поддерживают технологию РnР (автоматическое конфигурирование при включении/выключении) и снимают проблему дефицита адресов, каналов DMA и прерываний. Различаются пропускная способность и управление шинами. Шина USB ориентирована на периферийные устройства, подключаемые к PC. Изохронные передачи USB позволяют передавать цифровые ау-диосигналы, а шина USB 2.0 способна нести и видеоданные. Все передачи управляются централизованно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Адаптер USB пользователи современных ПК получают почти бесплатно, поскольку он входит в состав всех современных чипсетов системных плат. Непосредственное соединение нескольких PC шиной USB не предусматривается, хотя выпускаются «активные кабели» для связи пары компьютеров и устройства-концентраторы. Шина FireWire ориентирована на устройства бытовой электроники, которые с ее помощью могут быть объединены в единую домашнюю сеть. К этой сети может быть подключен компьютер, и даже не один. Принципиальным преимуществом шины 1394 является отсутствие необходимости в специальном контроллере шины (компьютере). Любое передающее устройство может получить полосу изохронного трафика и начинать передачу по сигналу автономного или дистанционного управления – приемники «услышат» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации. Шина USB(Universal Serial Bus – универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.0 была опубликована в начале 1996 года, большинство устройств поддерживает версию 1.1, которая вышла осенью 1998 года, В ней были устранены обнаруженные проблемы первой редакции. Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное превышение пропускной способности шины. Первоначально (в версиях 1.0 и 1.1) шина обеспечивала две скорости передачи информации: полную скорость FS (Full Speed) – 12 Мбит/с и низкую скорость LS (Low Speed) – 1,5 Мбит/с. В версии 2.0 определена еще и высокая скорость HS (High Speed) – 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутствовать и одновременно работать устройства со всеми тремя скоростями. Шина с использованием промежуточных хабов позволяет соединять устройства, удаленные от компьютера на расстояние до 25 м. Подробную и оперативную информацию по USB (на английском языке) можно найти по адресу http://www.usb.org. Организация шины USB.USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (devices) могут являться хабами, функциями или их комбинацией. Устройство-хаб (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство-функция (function) USB предоставляет системе дополнительные функциональные возможности, например подключение цифрового джойстика, акустических колонк с цифровым интерфейсом и т. п. Комбинированное устройство (compound device), содержащее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсистемой хост-компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств. Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства – исключительно ведомые. Физическая топология шины USB – многоярусная звезда. Ее вершиной является хост-контроллер, объединенный с корневым хабом (root hub), как правило, двухпортовым. Хаб является устройством – разветвителем, он может являться и источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб; шина допускает до 5 уровней каскадирования хабов (не считая корневого). Поскольку комбинированные устройства внутри себя содержат хаб, их подключение к хабу 6-го яруса уже недопустимо. Каждый промежуточный хаб имеет несколько нисходящих (downstream) портов для подключения периферийных устройств (или нижележащих хабов) и один восходящий (upstream) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба. Логическая топология USB – просто звезда: для хост-контроллера хабы создают иллюзию непосредственного подключения каждого устройства. В отличие от шин расширения (ISA, PCI, PC Card), где программа взаимодействует с устройствами посредством обращений по физическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA, взаимодействие приложений с устройствами USB выполняется только через программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB. В отличие от громоздких дорогих шлейфов параллельных шин АТА и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное. Кабель USB содержит одну экранированную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента – до 5 м. Для низкой скорости может использоваться невитой неэкранированный кабель длиной до 3 м. Система кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств (рис. 1 а, б). Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение (рис. 1 в).  Рис.31. Коннекторы USB: а – вилка типа «А», б –вилка типа «В», в – символическое обозначение Гнезда типа «А» устанавливаются только на нисходящих портах хабов, вилки типа «А» – на шнурах периферийных устройств или восходящих портов хабов. Гнезда и вилки типа «В» используются только для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств –мышей, клавиатур и т. п. кабели, как правило, не отсоединяются). Кроме стандартных разъемов, показанных на рисунке 31, применяются и миниатюрные варианты (рис. 2, в, г). Хабы и устройства обеспечивают возможность «горячего» подключения и отключения. Для этого разъемы обеспечивают более раннее соединение и позднее отсоединение питающих цепей по отношению к сигнальным, кроме того, предусмотрен протокол сигнализации подключения и отключения устройств.  Рис.32. Гнезда USB: а – типа «А», б – типа «В» стандартное, в,г – миниатюрные типа «В» Назначение выводов разъемов USB приведено в табл. 7, нумерация контактов показана на рис. 32. Все кабели USB «прямые» – в них соединяются одноименные цепи разъемов. Таблица 7. Назначение выводов разъема USB контакт | цвет провода | назначение | | красный | VBus – +5V для цепей питания | | белый | шина D– предназначена для приема данных | | зеленый | шина D+ предназначена для передачи данных | | черный | цепь "корпуса" для питания периферийных устройств | В шине используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Скорость устройства, подключенного к конкретному порту, определяется хабом по уровням сигналов на линиях D+ и D-, смещаемых нагрузочными резисторами приемопередатчиков: устройства с низкой скоростью «подтягивают» к высокому уровню линию D– с полной – D+. Подключение устройства HS определяется на этапе обмена конфигурационной информацией – физически на первое время устройство HS должно подключаться как FS. Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника, каждое устройство имеет линейные приемники сигналов D+ и D–, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса. Введение высокой скорости (480 Мбит/с – всего в 2 раза медленнее, чем Gigabit Ethernet) требует тщательного согласования приемопередатчиков и линии связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики. В отличие от формирователей потенциала для режимов FS и LS, передатчики HS являются источниками тока, ориентированными на наличие резисторов-терминаторов на обеих сигнальных линиях. Скорость передачи данных (LS, FS или HS) выбирается разработчиком периферийного устройства в соответствии с потребностями этого устройства. Реализация низких скоростей для устройства обходится несколько дешевле (приемопередатчики проще, а кабель для LS может быть и неэкранированной невитой парой). Если в «старой» USB устройства можно было, не задумываясь, подключать в любой свободный порт любого хаба, то в USB 2.0 при наличии устройств и хабов разных версий появились возможности выбора между оптимальными, неоптимальными и неработоспособными конфигурациями. Хабы USB 1.1 обязаны поддерживать скорости FS и LS, скорость подключенного к хабу устройства определяется автоматически по разности по-тенциалов сигнальных линий. Хабы USB 1.1 при передаче пакетов являются просто повторителями, обеспечивающими прозрачную связь периферийного устройства с контроллером. Передачи на низкой скорости довольно расточительно расходуют потенциальную пропускную способность шины: за то время, на которое они занимают шину, высокоскоростное устройство может передать данных в 8 раз больше. Но ради упрощения и удешевления всей системы на эти жертвы пошли, а за распределением полосы между разными устройствами следит планировщик транзакций хост-контроллера. В спецификации 2.0 скорость 480 Мбит/с должна уживаться с прежними, но при таком соотношении скоростей обмены на FS и LS «съедят» возможную полосу пропускания шины. Чтобы этого не происходило, хабы USB 2.0 приобретают черты коммутаторов пакетов. Если к порту такого хаба подключено высокоскоростное устройство (или аналогичный хаб), то хаб работает в режиме повторителя, и транзакция с устройством на HS занимает весь канал до хост-контроллера на все время своего выполнения. Если же к порту хаба USB 2.0 подключается устройство или хаб 1.1, то по части канала до контроллера пакет проходит на скорости HS, запоминается в буфере хаба, а к старому устройству или хабу идет уже на его «родной» скорости FS или LS. При этом функции контроллера и хаба 2.0 (включая и корневой) усложняются, поскольку транзакции на FS и LS расщепляются и между их частями вклиниваются высокоскоростные передачи. От старых (1.1) устройств и хабов все эти тонкости скрываются, что и обеспечивает обратную совместимость. Вполне понятно, что устройство USB 2.0 сможет реализовать высокую скорость, только если по пути от него к хост-контроллеру (тоже 2.0) будут встречаться только хабы 2.0. Если это правило нарушить и между ним и контроллером 2.0 окажется старый хаб, то связь может быть установлена только в режиме FS. Если такая скорость устройство и клиентское ПО устроит (к примеру, для принтера и сканера это выльется только в большее время ожидания пользователя), то подключенное устройство работать будет, но появится сообщение о неоптимальной конфигурации соединений. По возможности ее (конфигурацию) следует исправить, благо переключения кабелей USB можно выполнять на ходу. Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и категорично потребуют переключений. Если же хост-контроллер старый, то все преимущества USB 2.0 окажутся недоступными пользователю. В этом случае придется менять хост-контроллер (менять системную плату или приобретать PCI-карту контроллера). Контроллер и хабы USB 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к разным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность шины USB возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов. Хаб является ключевым элементом системы РnР в архитектуре USB. Хаб выполняет множество функций: 1. Обеспечивает физическое подключение устройств, формируя и воспринимая сигналы в соответствии со спецификацией шины на каждом из своих портов. 2. Управляет подачей питающего напряжения на нисходящие порты, причем предусматривается установка ограничения на ток, потребляемый каждым портом. 3. Отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях. 4. Обнаруживает ошибки на шине, выполняет процедуры восстановления и изолирует неисправные сегменты шины. 5. Обеспечивает связь сегментов шины, работающих на разных скоростях. Хаб следит за сигналами, генерируемыми устройствами. Неисправное устройство может не вовремя «замолчать» (потерять активность) или, наоборот, что-то «бормотать» (babble). Эти ситуации отслеживает ближайший к устройству хаб и запрещает восходящие передачи от такого устройства не позже, чем по границе (микро) кадра. Благодаря бдительности хабов эти ситуации не позволят неисправному устройству заблокировать всю шину. Каждый из нисходящих (downstream) портов может быть разрешен или запрещен, а также сконфигурирован на высокую, полную или ограниченную скорость обмена. Хабы могут иметь световые индикаторы состояния нисходящих портов, управляемые автоматически (логикой хаба) или программно (хост-контроллером). Индикатор может представлять собой пару светодиодов – зеленый и желтый (янтарный) или один светодиод с изменяющимся цветом. На рис. 33 приведен вариант соединения устройств и хабов, где высокоскоростным устройством USB 2.0 является только телекамера, передающая видеопоток без компрессии. Подключение принтера и сканера USB 1.1 к отдельным портам хаба 2.0, да еще и развязка их с аудиоустройствами, позволяет им использовать полосу шины по 12 Мбит/с каждому.  Рис.33. Пример конфигурации соединений Таким образом, из общей полосы 480 Мбит/с на «старые» устройства (USB 1.0) выделяется 3x12=36 Мбит/с. Вообще-то можно говорить и о полосе в 48 Мбит/с, поскольку клавиатура и мышь подключены к отдельному порту хост-контроллера USB 2.0, но эти устройства «освоят» только малую часть из выделенных им 12 Мбит/с. Конечно, можно подключать клавиатуру и мышь к порту внешнего хаба, но с точки зрения повышения надежности системные устройства ввода лучше подключать наиболее коротким (по количеству кабелей, разъемов и промежуточных устройств) способом. Неудачной конфигурацией было бы подключение принтера (сканера) к хабу USB 1.1 – во время работы с аудиоустройствами (если они высокого качества) скорость печати (сканирования) будет падать. Неработоспособной конфигурацией явилось бы подключение телекамеры к порту хаба USB 1.1. При планировании соединений следует учитывать способ питания устройств: устройства, питающиеся от шины, как правило, подключают к хабам, питающимся от сети. К хабам, питающимся от шины, подключают лишь маломощные устройства – так, к клавиатуре USB, содержащей внутри себя хаб, под-ключают мышь USB и другие устройства-указатели (трекбол, планшет). Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации. Если хаб не может обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано. Устройство USB должно поддерживать режим приостановки (sus-pended mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины. Возможность удаленного пробуждения (remote wakeup) позволяет приостановленному устройству подать сигнал хост-компьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена. Модель передачи данныхКаждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес. Логически устройство представляет собой набор независимых конечных точек (endpoint, ЕР), с которыми хост-контроллер (и клиентское ПО) обменивается информацией. Каждая конечная точка имеет свой номер и описывается следующими параметрами: 1. Требуемая частота доступа к шине и допустимые задержки обслуживания. 2. Требуемая полоса пропускания канала. 3. Требования к обработке ошибок. 4. Максимальные размеры передаваемых и принимаемых пакетов. 5. Тип передачи. 6. Направление передачи (для передач массивов и изохронного обмена). Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса состояния устройства. Эта точка всегда сконфигурирована при включении питания и подключении устройства к шине. Она поддерживает передачи типа «управление». Кроме нулевой точки, устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными. Низкоскоростные устройства могут иметь до двух дополнительных точек, полноско-ростные – до 15 точек ввода и 15 точек вывода. Дополнительные точки (а именно они и предоставляют полезные для пользователя функции) не могут быть использованы до их конфигурирования (установления согласованного с ними канала). Каналом (pipe) в USB называется модель передачи данных между хост-контроллером и конечной точкой устройства. Имеются два типа каналов: потоки и сообщения. Поток (stream) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов – ввода и вывода. Поток может реализовывать следующие типы обмена: передача массивов, изохронный и прерывания. Сообщение (message) имеет формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двусторонний обмен сообщениями адресуется к одной и той же конечной точке. Типы передач данных.Архитектура USB допускает четыре базовых типа передачи данных: 1. Управляющие посылки (control transfers) используются для конфигурирования устройств во время их подключения и для управления устройствами в процессе работы. Протокол обеспечивает гарантированную доставку данных. 2. Передачи массивов данных (bulk data transfers) – это передачи без каких-либо обязательств по задержке доставки и скорости передачи. Передачи массивов могут занимать всю полосу пропускания шины, свободную от передач других типов. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Доставка гарантированная – при случайной ошибке выполняется повтор. Передачи массивов уместны для обмена данными с принтерами, сканерами, устройствами хранения и т. п. 3. Прерывания (interrupt) – короткие передачи, которые имеют спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Предел времени обслуживания устанавливается в диапазоне 10-255 мс для низкой, 1-255 мс для полной скорости, на высокой скорости можно заказать и 125 мкс. При случайных ошибках обмена выполняется повтор. Прерывания используются, например, при вводе символов с клавиатуры или для передачи сообщения о перемещении мыши. 4. Изохронные передачи (isochronous transfers) – непрерывные передачи в реальном времени, занимающие предварительно согласованную часть пропускной способности шины с гарантированным временем задержки доставки. Позволяют на полной скорости организовать канал с полосой 1,023 Мбайт/с (или два по 0,5 Мбайт/с), заняв 70 % доступной полосы (остаток можно заполнить и менее емкими каналами). На высокой скорости конечная точка может получить канал до 24 Мбайт/с (192 Мбит/с). В случае обнаружения ошибки изохронные данные не повторяются – недействительные пакеты игнорируются. Изохронные передачи нужны для потоковых устройств: видеокамер, цифровых аудиоустройств (колонки USB, микрофон), устройств воспроизведения и записи аудио- и видеоданных (CD и DVD). Видеопоток (без компрессии) шина USB способна передавать только на высокой скорости. Полоса пропускания шины делится между всеми установленными каналами. Выделенная полоса закрепляется за каналом, и, если установление нового канала требует такой полосы, которая не вписывается в уже существующее распределение, запрос на выделение канала отвергается. Архитектура USВ предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. Шина USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд. Протокол.Все обмены (транзакции) с устройствами USB состоят из двух-трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-маркер (token packet). Он описывает тип и направление передачи, адрес устройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет квитирования (handshake packet). Последовательность пакетов в транзакциях изображена рис. 34.  Рис.34. Последовательность пакетов: а – ввод, б – вывод. Хост-контроллер организует обмены с устройствами согласно своему плану распределения ресурсов. Контроллер циклически (с периодом 1,0±0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные транзакции (рис. 35).  Рис.35. Поток кадров USB. Каждый кадр начинается с посылки маркера SOF (Start Of Frame), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame), на время которого хабы запрещают передачу по направлению к контроллеру. В режиме HS пакеты SOF передаются вначале каждого микрокадра (период 125±0,0625 мкс). Хост планирует загрузку кадров так, чтобы в них всегда находилось место для транзакций управления и прерываний. Свободное время кадров может заполняться передачами массивов (bulk transfers). В каждом (микро)кадре может быть выполнено несколько транзакций, их допустимое число зависит от длины поля данных каждой из них. Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки. Аппаратные средства обнаруживают ошибки передачи, а контроллер автоматически производит трехкратную попытку передачи. Если повторы безуспешны, сообщение об ошибке передается клиентскому ПО. Синхронизация при изохронной передаче.Изохронная передача данных связана с синхронизацией устройств, объединяемых в единую систему. Возьмем пример использования USB; когда к компьютеру подключен микрофон USB (источник данных) и колонки USB (приемник данных), и эти аудиоустройства связаны между собой через программный микшер (клиентское ПО). Каждый из этих компонентов может иметь собственные «понятия» о времени и синхронизации: микрофон, к примеру, может иметь частоту выборки 8 кГц и разрядность данных 1 байт (поток 64 Кбит/с), стереоколонки – 44,1 кГц и разрядность 2x2 байта (176,4 Кбит/с), а микшер может работать на частоте выборок 32 кГц. Микшер в этой системе является связующим звеном, и его источник синхронизации будем считать главным (master clock). Программный микшер обрабатывает данные пакетами, сеансы обработки выполняются регулярно с определенным периодом обслуживания (скажем, в 20 мс – частота 50 Гц). В микшере должны быть модули согласования частот выборки, которые объединяют несколько выборок в одну, если входная частота выше выходной, или «сочиняют» (интерполируют) новые промежуточные выборки, если выходная частота выше. В системе с USB приходится иметь дело со следующими частотами: 1. Частота выборки (sample rate) для источников (source) и приемников (sink) данных. 2. Частота шины USB – частота кадров (1 кГц) для полной скорости и микрокадров (8 кГц) для высокой (с этой частотой все устройства USB «видят» маркеры начала (микро)кадров SOF). 3. Частота обслуживания – частота, с которой клиентское ПО обращается к драйверам USB для передачи и приема изохронных данных. В системе без общего источника синхронизации между парами синхросигналов возможны отклонения следующих типов: 1. Дрейф (drift) – отклонения формально одинаковых частот от номиналов (не бывает двух абсолютно одинаковых генераторов); 2. Дрожание (jitter) – колебание частот относительно номинала; 3. Фазовый сдвиг, если сигналы не связаны системой фазовой автоподстройки ФАПЧ (PLL). Асинхронные устройства не имеют возможности согласования своей частоты выборок с метками SOF или иными частотами системы USB. Частота передачи данных у них фиксированная или программируемая. Число байт данных, принимаемых за каждый (микро)кадр USB, не является постоянным. Источник данных неявно сообщает свою скорость передачи данных числом выборок, генерируемых им за один (микро)кадр (клиентское ПО будет обрабатывать столько данных, сколько реально поступило). Приемник данных должен обеспечивать обратную связь для адаптивного драйвера клиентского ПО, чтобы согласовать темп выдачи потока. Примерами асинхронного устройства-источника может быть CD-плейер с синхронизацией от кварцевого генератора или приемник спутникового телевещания. Пример приемника – дешевые колонки, работающие от внутреннего источника синхронизации. Синхронные устройства имеют внутренний генератор, синхронизируемый с метками SOF (системная частота 1 кГц); на высокой частоте передачи более точную синхронизацию обеспечивает связь с микрокадрами. Источники и приемники за каждый (микро) кадр генерируют (потребляют) одинаковое количество байт данных, которое устанавливается на этапе программирования каналов. Примером синхронного источника может быть цифровой микрофон с частотой выборки, синтезируемой по SOF. Адаптивные устройства имеют возможность подстройки своей внутренней частоты под требуемый поток данных (в определенных границах). Адаптивный источник позволяет менять скорость под управлением приемника, обеспечивающего обратную связь. Для адаптивного приемника информацию о частоте задает входной поток данных. Он определяет мгновенное значение частоты по количеству данных, принятых за некоторый интервал усреднения. Обратная связь позволяет согласовать значения частот устройств с частотой шины. Асинхронный приемник должен явным образом сообщать хост-контроллеру желаемую частоту передачи данных относительно частоты (микро)кадров. Это позволит хост-контроллеру постоянно корректировать число передаваемых байт за каждый (микро)кадр, не допуская переполнения или опустошения буфера устройства-приемника. Адаптивный передатчик должен воспринимать информацию обратной связи, чтобы за каждый (микро)кадр генерировать ровно столько данных, сколько требуется хост-контроллеру. Для обратной связи в устройстве выделяется специальная конечная точка, через которую периодически передается информация о текущем значении желаемой относительной частоты. В принципе контроллер USB может подстраивать частоту кадров, но под частоту внутренней синхронизации только одного устройства. Подстройка осуществляется через механизм обратной связи, который позволяет изменять период кадра в пределах ±1 битового интервала. Хост.У каждой шины USB должен быть один (и только один!) хост – компьютер с контроллером USB. Хост делится на три основных уровня. 1. Интерфейс шины USB обеспечивает физический интерфейс и протокол шины. Интерфейс шины реализуется хост-контроллером, имеющим встроенный корневой хаб, обеспечивающий точки физического подключения к шине (гнезда USB типа «А»). Хост-контроллер отвечает за генерацию (микро) кадров. На аппаратном уровне хост-контроллер обменивается информацией с основной памятью компьютера, используя прямое управление шиной (bus-mastering) с целью минимизации нагрузки на центральный процессор. 2. Система USB, используя хост-контроллер(ы), транслирует клиентское «видение» обмена данными с устройствами в транзакции, выполняемые с реальными устройствами шины. Система отвечает и за распределение ресурсов USB – полосы пропускания и мощности источников питания (для устройств, питающихся от шины). Система состоит из трех основных частей: – драйвер хост-контроллера – HCD (Host Controller Driver) – модуль, привязанный к конкретной модели контроллера, обеспечивающий абстрагирование драйвера USB и позволяющий в одну систему включать несколько разнотипных контроллеров. – драйвер USB – USBD (USB Driver) – обеспечивает основной интерфейс (USBDI) между клиентами и устройствами USB. Интерфейс HCDI (Host Controller Driver Interface) между USBD и HCD спецификацией USB не регламентируется. Он определяется разработчиками ОС и должен поддерживаться разработчиками хост-контроллеров, желающих иметь поддержку своих изделий конкретными ОС. Клиенты не могут пользоваться интерфейсом HCDI; для них предназначен интерфейс USBDI. USBD обеспечивает механизм обмена в виде пакетов IRP (I/O Request Packet – пакет запроса ввода-вывода), состоящих из запросов на транспортировку данных по заданному каналу. Кроме того, USBD отвечает за некоторое абстрактное представление устройства USB клиенту, которое позволяет выполнять конфигурирование и управление состоянием устройств. Реализация интерфейса USBDI определяется операционной системой; в спецификации USВ излагаются только общие идеи. – программное обеспечение хоста реализует функции, необходимые для функционирования системы USB в целом: обнаружение подключения и отключения устройств и выполнение соответствующих действий по этим событиям (загрузки требуемых драйверов), нумерацию устройств, распределение полосы пропускания и потребляемой мощности и т. п. 3. Клиенты USB – программные элементы (приложения или системные компоненты), взаимодействующие с устройствами USB. Клиенты могут взаимодействовать с любыми устройствами (их конечными точками), подключенными к системе USB. Однако система USB изолирует клиентов от непосредственного обмена с какими-либо портами (в пространстве ввода-вывода) или ячейками памяти, представляющими интерфейсную часть контроллера USB. В совокупности уровни хоста имеют следующие возможности: 1. Обнаружение подключения и отсоединения устройств USB. 2. Манипулирование потоками управления между устройствами и хостом. 3. Манипулирование потоками данных. 4. Сбор статистики активности и состояний устройств. 5. Управление электрическим интерфейсом между хост-контроллером и устройствами USВ, включая управление электропитанием. Хост-контроллер является аппаратным посредником между устройствами USB и хостом. Программная часть хоста в полном объеме реализуется операционной системой. До загрузки ОС может функционировать лишь усеченная часть ПО USB, поддерживающая только устройства, требующиеся для загрузки. Так, в BIOS современных системных плат имеется поддержка клавиатуры USB, реализующая функции сервиса Int 10h. При загрузке системы USB эта «дозагрузочная» поддержка игнорируется – система начинает работу с контроллером «с чистого листа», то есть со сброса и определения всех подключенных устройств. По окончании работы ОС передача состояния USB «дозагрузочной» поддержке не предусматривается, так что для нее это событие тоже может рассматриваться как первоначальное включение. В спецификации РС'2001 выдвигается требование к BIOS поддержки USB в такой мере, чтобы обеспечивалась загрузка ОС с устройств USB. USB поддерживает динамическое подключение и отключение устройств. Нумерация (перенумерация) устройств шины идет постоянно, отслеживая изменения физической топологии. Все устройства подключаются через порты хабов. Хабы определяют подключение и отключение устройств к своим портам и сообщают состояние портов при запросе от контроллера. Хост разрешает работу порта и адресуется к устройству через канал управления, используя нулевой адрес – USB De-fault Address. При начальном подключении или после сброса все устройства адресуются именно так. Хост определяет, является новое подключенное устройство хабом или функцией, и назначает ему уникальный адрес USB. Хост создает канал управления (control pipe) с этим устройством, используя назначенный адрес и нулевой номер точки назначения. Если новое устройство является хабом, хост определяет подключенные к нему устройства, назначает им адреса и устанавливает каналы. Если новое устройство является функцией, уведомление о подключении передается диспетчером USB заинтересованному ПО. Когда устройство отключается, хаб автоматически запрещает соответствующий порт и сообщает об отключении контроллеру, Который удаляет сведения о данном устройстве из всех структур данных. Если отключается хаб, процесс удаления выполняется для всех подключенных к нему устройств. Если отключается функция, уведомление посылается заинтересованному ПО. Применение шины USB.Благодаря своей универсальности и способности эффективно передавать разнородный трафик, шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC – СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI. Спецификация USB 2.0 позволяет говорить и о подключении традиционных «клиентов» шин АТА и SCSI, а также захвате части ниши применения шины FireWire. Привлекательность USB придает возможность подключения/отключения устройств на ходу и возможность их использования практически сразу, без перезагрузки ОС. Удобна и возможность подключения большого количества (до 127) устройств к одной шине, правда, при наличии хабов. Хост-контроллер интегрирован в большинство современных системных плат. Выпускаются и карты расширения с контроллерами USB (обычно для шины PCI). Колонки, микрофоны, головные телефоны (наушники). USB позволяет передавать потоки аудиоданных, достаточные для обеспечения самого высокого качества. Передача в цифровом виде от самого источника сигнала (микрофона со встроенным преобразователем и адаптером) до приемника и цифровая обработка в хост-компьютере позволяют избавиться от наводок, свойственных аналоговой передачи аудиосигналов. Использование этих аудио-компонентов позволяет в ряде случаев избавиться от звуковой карты компьютера – аудиокодек (АЦП и ЦАП) выводится за пределы компьютера, а все функции обработки сигналов (микшер, эквалайзер) реализуются центральным процессором чисто программно. Видео– и фотокамеры. USB 1.1 позволяет передавать статические изображения любого разрешения за приемлемое время, а также передавать поток видеоданных (живое видео) с достаточной частотой кадров (25-30 Кбит/с) только с невысоким разрешением или сжатием данных, от которого, естественно, страдает качество изображения, USB 2.0 позволяет передавать поток видеоданных высокого разрешения без сжатия (и потери качества). С интерфейсом USB выпускают как камеры, так и устройства захвата изображения с телевизионного сигнала и TV-тюнеры. Преобразователи интерфейсов позволяют через порт USВ, имеющийся теперь практически на всех компьютерах; подключать устройства с самыми разнообразными интерфейсами: Centronics и IEEE 1284 (LPT-порты), RS-232C (эмуляция UART 16550A – основы СОМ-портов) и другие последовательные интерфейсы (RS-422, RS-485), эмуляторы портов клавиатуры и даже Game-порта, переходники на шину ATA, ISA, PC Card и любые другие, для которых достаточно производительности. Здесь USB становится палочкой-выручалочкой, когда встает проблема 2-го (3-го) LPT- или СОМ-порта в блокнотном ПК и в других ситуациях. При этом ПО преобразователя может обеспечить эмуляцию классического варианта «железа» стандартных портов IBM PC, но только под управлением ОС защищенного режима. Приложение MS-DOS может обращаться к устройствам по адресам ввода-вывода, памяти, прерываниями, каналами DMA, но только из сеанса MS-DOS, открытого в ОС с поддержкой USB (чаще это Windows). Скорость передачи данных через конвертер USB – LPT может оказаться даже выше, чем у реального LPT-порта, работающего в режиме SPP. Разработка собственных устройств USB.Несмотря на довольно сложный протокол обмена, интерфейсом USB можно снабдить и периферийные устройства собственной разработки. Для этого выпускается широкий ассортимент микросхем, со стороны USB различающихся скоростями обмена (LS, FS или HS), числом и возможностями конечных точек (тип передач, размер буфера). Функциональное назначение этих микросхем различно. С портом USB выпускаются микроконтроллеры на ядре MCS51, М68НС05, М68НС11 или RISC-архитектуры; они различаются объемом памяти (оперативной и энергонезависимой), производительностью, питанием, потреблением. Микроконтроллеры могут иметь встроенные устройства АЦП/ЦАП, дискретные линии ввода-вывода общего назначения, последовательные и параллельные порты различных типов. Их можно использовать для подключения устройств с любыми интерфейсами, сигнальных процессоров и т. п. Из этого ассортимента можно выбрать подходящую микросхему, на базе которой разрабатываемое устройство будет реализовано с минимальным числом дополнительных элементов. К микроконтроллерам прилагаются и средства разработки их встроенного ПО (firmware) – самой сложной части такого устройства. Есть микроконтроллеры с USB, способные работать без программирования энергонезависимой памяти; микроконтроллеры серии EzUSB фирмы Cypress Semiconductor каждый раз загружают свою программу в ОЗУ по шине USB из хост-компьютера в процессе подключения. Есть и периферийные микросхемы – порты USB, подключаемые к микроконтроллерам параллельной 8/16-битной шиной данных с обычным набором управляющих сигналов (CS#, RD#, WR#...), линией запроса прерывания и, возможно, сигналами канала DMA. Выпускаются и специализированные преобразователи интерфейсов USB в последовательный (RS-232, RS-422/485) и параллельный, не требующие программирования (нужно лишь записать в EEPROM идентификатор устройства). Есть и микросхемы USB, сочетающие в себе и функции, и хабы. Немаловажная часть разработки собственных устройств – программное обеспечение для хост-компьютера. В ряде случаев удается воспользоваться готовыми драйверами (например, драйвером виртуального СОМ-порта для преобразователя интерфейса). В других случаях ПО приходится писать самостоятельно, и хорошо, когда изготовитель микросхем с USВ заботится о предоставлении инструментальных средств разработки всех частей ПО. Шина IEEE 1394 – FireWire.Стандарт для высокопроизводительной последовательной шины (High Performance Serial Bus), получивший официальное название IEEE 1394, был принят в 1995 году. Целью являлось создание шины, не уступающей параллельным шинам при существенном удешевлении и повышении удобства подключения (за счет перехода на последовательный интерфейс). Стандарт основан на шине FireWire, используемой Apple Computer в качестве дешевой альтернативы SCSI в компьютерах Macintosh и PowerMac. Название FireWire («огненный провод») теперь применяется и к реализациям IEEE 1394, оно сосуществует с кратким обозначением 1394. Другое название того же интерфейса – iLink, а иногда и Digital Link – используется фирмой Sony применительно к устройствам бытовой электроники. MultiMedia Connection – имя, используемое в логотипе 1394 High Performance Serial Bus Trade Association. Стандарт 1394 определяет три возможные частоты передачи сигналов по кабелям: 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Частоты в стандарте обозначаются как S100, S200 и S400 соответственно. В последней утвержденной ревизии стандарта, Р1394-2000, новых скоростей (S800, S1600 и S3200) еще не появилось, и сейчас 1394 сосуществует с шиной USB, для которой в спецификации USB 2.0 уже определена скорость 480 Мбит/с. Основные свойства шины FireWire: 1. Многофункциональность. Шина обеспечивает цифровую связь до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники – цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплейеры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства компьютеров (принтеры, сканеры, устройства дисковой памяти) и сами компьютеры могут объединяться в единую сеть. 2. Высокая скорость обмена и изохронные передачи. Шина позволяет даже на начальном уровне (S100) передавать одновременно два канала видео (30 кадров в секунду) широковещательного качества и стерео-аудиосигнал с качеством CD. 3. Низкая цена компонентов и кабеля. 4. Легкость установки и использования. FireWire расширяет технологию РпР. Система допускает динамическое (горячее) подключение и отключение устройств. Устройства автоматически распознаются и конфигурируются при включении/ отключении. Питание от шины (ток до 1,5 А) позволяет подключенным устройствам общаться с системой даже при отключении их питания. Управлять шиной и другими устройствами могут не только PC, но и другие «интеллектуальные» устройства бытовой электроники. FireWire по инициативе VESA позиционируется как шина «домашней сети», объединяющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB. Физический уровень сети.Кабельная сеть 1394 собирается по простым правилам – все устройства соединяются друг с другом кабелями по любой топологии (древовидной, цепочечной, звездообразной). Каждое «полноразмерное» устройство (узел сети) обычно имеет три равноправных соединительных разъема. Некоторые малогабаритные устройства могут иметь только один разъем, что ограничивает возможные варианты их местоположения. Стандарт допускает и до 27 разъемов на одном устройстве, которое будет играть роль кабельного концентратора. Допускается множество вариантов подключения устройств, но со следующими ограничениями: 1. Между любой парой узлов может быть не более 16 кабельных сегментов; 2. Длина сегмента стандартного кабеля не должна превышать 4,5 м; 3. Суммарная длина кабеля не должна превышать 72 м (применение более качественного кабеля позволяет ослабить влияние этого ограничения); 4. Топология не должна иметь петель, хотя в последующих ревизиях предполагается автоматическое исключение петель в «патологических» конфигурациях. Стандартный кабель 1394 содержит 6-проводов, заключенных в общий экран, и имеет однотипные 6-контактные разъемы на концах (рис. 36, а). Две витые пары используются для передачи сигналов (ТРА и ТРВ) раздельно для приемника и передатчика, два провода задействованы для питания устройств (8-40 В, до 1,5 А). В стандарте предусмотрена гальваническая развязка устройств, для чего используются трансформаторы (напряжение изоляции развязки до 500 В) или конденсаторы (в дешевых устройствах с напряжением развязки до 60 В относительно общего провода). Некоторые бытовые устройства имеют только один 4-контактный разъем меньшего размера (рис. 6, б), у которого реализованы только сигнальные цепи.  Рис.35. Разъемы FireWire: a – 6-контактное гнездо, б – 4-контактное гнездо. Эти устройства подключаются к шине через специальный переходной кабель только как оконечные (хотя возможно применение специальных адаптеров-разветвителей). В кабелях FireWire сигнальные пары соединяются перекрестно (табл. 8), поскольку все порты равноправны. Таблица 8. Назначение выводов разъема FireWire 4-конт разъем | 6-конт разъем | цвет провода | назначение | | | белый | Power питание | | | черный | GND цепь "корпуса" питания | | | красный | ТРВ– прием данных | | | зелёный | ТРВ+ передача данных | | | оранжевый | ТРА– прием данных | | | синий | ТРА+ передача данных | В следующей версии предусматриваются и новые варианты среды передачи: – кабель UTP категории 5 со стандартными коннекторами RJ-45 (используются две пары проводов), длина сегмента до 100 м – дешевый вариант для S100; – пластиковое оптоволокно (два волокна POF для небольших расстояний и НРС F для больших дистанций) – дешевый вариант для S200; – многомодовое оптоволокно (два волокна 50 мкм) – более дорогой вариант для будущих скоростей вплоть до S3200. Каждое устройство, имеющее более одного разъема 1394, является повторителем. Сигнал, обнаруженный на входе приемника с любого разъема, ресинхронизируется по внутреннему тактовому генератору и выводится на передатчики всех остальных разъемов. Таким образом, осуществляется доставка сигналов от каждого устройства ко всем остальным и предотвращается накопление «дрожания» (jitter) сигнала, ведущее к потере синхронизации. Стандарт 1394 определяет две категории шин: кабельные шины и кросс-шины (Backplane). Под кросс-шинами подразумеваются обычно параллельные интерфейсы, объединяющие внутренние подсистемы устройства, подключенного к кабелю 1394. Сеть может состоять из мно |