Классификация подшипников скольжения Неразъемные (глухие) подшипники применяют при малой скорости скольжения с перерывами в работе (механизмы управления и другие). Разъемные подшипники имеют основное применение в общем и особенно в тяжелом машиностроении. Они облегчают монтаж валов. При большой длине цапф применяют самоустанавливающиеся подшипники. Сферические выступы вкладышей позволяют им само устанавливаться, устраняя тем самым перекосы цапф от деформации вала и неточностей монтажа, обеспечивая равномерное распределение нагрузки по длине вкладыша. Подшипники качения Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба — дорожки качения, по которым при работе подшипника катятся тела качения. В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жёсткости применяют так называемые совмещённые опоры: дорожки качения при этом выполняют непосредственно на валу или на поверхности корпусной детали. Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большее число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению. В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение, и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые — чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника. Классификация подшипников качения осуществляется на основе следующих признаков: По виду тел качения Шариковые, Роликовые (игольчатые, если ролики тонкие и длинные); По типу воспринимаемой нагрузки Радиальные (нагрузка вдоль оси вала не допускается). Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперек оси вала. Часто нагрузка вдоль оси только одного направления. Упорные (нагрузка поперек оси вала не допускается). Линейные. Обеспечивают подвижность вдоль оси, вращение вокруг оси не нормируется или невозможно. Встречаются рельсовые, телескопические или вальные линейные подшипники. Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения. По числу рядов тел качения Однорядные, Двухрядные, Многорядные; По способности компенсировать несоосность вала и втулки[4] Самоустанавливающиеся. Несамоустанавливающиеся. 39. Муфта— устройство (деталь машины), предназначенное для соединения друг с другом концов валов и свободно сидящих на них деталей и передачи крутящего момента. Служат для соединения двух валов, расположенных на одной оси или под углом друг к другу. Муфта передаёт механическую энергию без изменения её величины. 40. Фрикционная передача— кинематическая пара, использующая силу трения для передачи механической энергии. Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи. Фрикционные передачи делятся на: с параллельными валами с пересекающимися валами с внешним контактом с внутренним контактом по возможности варьирования передаточного отношения нерегулируемые (i=const) регулируемые (фрикционный вариатор) по возможности изменения передаточного отношения при наличии промежуточных тел в передаче по форме контактирующих тел цилиндрические, конические, сферические, плоские Применение Валы прокатных станов, мотор-редуктор с фрикционным вариатором, ведущие колёса транспортных средств, взаимодействующих с опорной поверхностью посредством сил трения. 41. Ременная передача — это передача механической энергии при помощи гибкого элемента — приводного ремня, за счёт сил трения или сил зацепления (зубчатые ремни). Может иметь как постоянное, так и переменное передаточное число (вариатор), валы которого могут быть с параллельными, пересекающимися и со скрещивающимися осями. Состоит из ведущего и ведомого шкивов и ремня (одного или нескольких). Достоинства плавность работы; бесшумность; компенсация неточности установки шкивов редуктора, особенно по углу скрещивания между валами, вплоть до применения передачи между перемещаемыми валами; компенсация перегрузок (за счет проскальзывания); сглаживание пульсаций как от двигателя (особенно ДВС), так и от нагрузки, поэтому упругая муфта в приводе может быть необязательна; отсутствие необходимости в смазке; низкая стоимость деталей (ремня и шкивов); лёгкий монтаж; возможность использования в качестве муфты сцепления (например, на мотоблоках) (для клиновых ремней) возможность получения регулируемого передаточного отношения (вариатор) (в сравнении с цепной передачей): возможность работы на высоких окружных скоростях; при обрыве ремня прочие элементы привода не повреждаются, и шкивы вращаются свободно (а при обрыве цепи она часто складывается, повреждая кожух и блокируя приводной вал) (в сравнении с зубчатой передачей): возможность передачи движения между валами, находящимися на значительном расстоянии друг от друга; Классификация По способу передачи механической энергии: трением; Различные способы установки пассика: открытый, перекрёстный, полуперекрёстный зацеплением. По виду ремней: плоские ремни; клиновые ремни; вентиляторные ремни; поликлиновые ремни; зубчатые ремни; вариаторные; тяговые; многоручьевые; транспортировочные (конвейерная лента); протяжные; ремни круглого сечения (Пассик). 42. Зубчатой передачей называется механизм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек. Зубчатое колесо, сидящее на передающем вращение валу, называется ведущим, а на получающем вращение - ведомым. Меньшее из двух колес сопряженной пары называют шестерней; большее - колесом; термин «зубчатое колесо» относится к обеим деталям передачи. 43. Червя́чная переда́ча (зубчато-винтовая передача) — механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червяк представляет собой винт со специальной резьбой, в случае эвольвентного профиля колеса форма профиля резьбы близка к трапецеидальной. На практике применяются однозаходные, двухзаходные и четырёхзаходные червяки. Червячное колесо представляет собой зубчатое колесо. В технологических целях червячное колесо, как правило, изготовляют составленным из двух материалов: венец — из дорогого антифрикционного материала (например, избронзы), а сердечник — из более дешёвых и прочных сталей или чугунов. Входной и выходной валы передачи скрещиваются, обычно (но не всегда) под прямым углом. 44. Цепная передача — это передача механической энергии при помощи гибкого элемента — цепи, за счёт сил зацепления. Может иметь как постоянное, так и переменное передаточное число (напр., цепной вариатор). Состоит из ведущей и ведомой звездочки и цепи. Цепь состоит из подвижных звеньев. В замкнутое кольцо для передачи непрерывного вращательного движения концы цепи соединяются с помощью специального разборного звена. Обычно число зубьев на звёздочках и число звеньев цепи стремятся делать взаимно простыми, что обеспечивает равномерность износа: каждый зуб звёздочки будет поочерёдно работать со всеми звеньями цепи. 45. Передача винт—гайка предназначена для преобразования вращательного движения в поступательное и наоборот. В ней используют пары винт—гайка скольжения или качения. Достоинствами передачи винт—гайка скольжения являются большой выигрыш в силе, высокая точность перемещений, малые размеры, возможность обеспечения самоторможения, что позволяет широко использовать ее в грузоподъемных механизмах, например в винтовых домкратах, в механизмах подач станков и приводах роботов, а также в измерительных и регулировочных механизмах. Достоинства передачи винт-гайка качения — сравнительно высокий КПД, высокая жесткость (с предварительным натягом полугаек), малый износ в сравнении с передачами скольжения. К недостаткам передачи винт-гайка скольжения следует отнести низкий КПД в передачах скольжения, невозможность получения больших скоростей поступательного движения. Недостатком передачи винт-гайка качения является сложность и дороговизна изготовления. 46. .Винт-гайка качения— передача преобразующая вращательное движение в поступательное, или наоборот. Передачи трения качения или шариковые винтовые пары ведущим элементом в передаче, как правило, является винт, ведомым - гайка. В передачах винт-гайка качения на винте и в гайке выполнены винтовые канавки (резьба) полукруглого профиля, служащие дорожками качения для шариков. Передачи винт-гайка находят применение в устройствах, где требует; получать большой выигрыш в силе, например в домкратах, винтовых прессах, нагрузочных устройствах испытательных машин, механизмах металлорежущих станков или в измерительных и других механизмах для точных делительных перемещений. Основные достоинства: 1. малые потери на трение. КПД передачи достигает 0,9 и выше; 2. высокая несущая способность при малых габаритах; 3. возможность получения малых и точных перемещений; 4. отсутствие осевого и радиального зазоров (то есть мертвого хода); 5. высокий ресурс. Недостатки. 1. Требование высокой точности изготовления, сложность конструкции гайки. 2. Требование хорошей защиты передачи от загрязнений. Шарико-винтовые передачи применяют в механизмах точных перемещений, в следящих системах и в ответственных силовых передачах (станкостроение, работа техника, авиационная и космическая техника, атомная энергетика и др.). При вращении винта шарики вовлекаются в движение по винтовым канавкам, поступательно перемещают гайку и через перепускной канал возвращаются обратно. Перепускной канал выполняют между соседними или между первым и последним (рис. 4) витками гайки. Таким образом, перемещение шариков происходит по замкнутой внутри гайки траектории. В станкостроении применяют трех витковые гайки. Перепускной канал выполняют в специальном вкладыше, который вставляют в овальное окно гайки. В трех витковой гайке предусматривают три вкладыша, расположенные под углом 120° один к другому и смещенные до длине гайки на один шаг резьбы по отношению друг к другу. Таким образом, шарики в гайке разделены на три (по числу рабочих витков) независимые группы. При работе передачи шарики, пройдя по винтовой канавке на винте путь, равный длине одного витка, выкатываются из резьбы в перепускной канал вкладыша и возвращаются обратно в исходное положение на тот же виток гайки. Шариковинтовые передачи выполняют с одной или чаще с двумя гайками, установленными в одном корпусе. В конструкциях с двумя гайками наиболее просто исключить осевой зазор в сопряжении винт-гайка и тем самым повысить осевую жесткость передачи и точность перемещения. Устраняют осевой зазор и создают предварительный натяг путем относительного осевого (например, с помощью прокладок) или углового смещения двух гаек. 47. Реечная передача (кремальера) (фр. crémaillère) — один из видов механических передач, преобразующий вращательное движение ведущей шестерни в поступательное движение рейки. Может использоваться, например, в качестве механизма для передвижения объективной доски камеры или других приспособлений (теодолита, нивелира…) при наводке объектива на резкость. Реечная передача использовалась в старых складных фотокамерах, рассчитанных на фотоматериалы большого формата (плёнки и фотопластинки); в телескопах реечная передача широко применяется для фокусировки изображения — так называемый реечный фокусер. 48. Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали: Подвижные: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками или кривошип, маховик. Неподвижные: блок цилиндров (является базовой деталью и как двигателя внутреннего сгорания) и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала. 49. Кулисный механизм, шарнирный механизм, в котором два подвижных звена — кулиса и кулисный камень — связаны между собой поступательной (иногда вращательной при дуговой кулисе) кинематической парой. Наиболее распространённые плоские четырёхзвенные К. м. в зависимости от типа третьего подвижного звена делятся на группы: кривошипно-кулисные, кулисно-коромысловые, кулисно-ползунные, двухкулисные. Кривошипно-кулисные механизмы могут иметь вращающуюся, качающуюся или поступательно-движущуюся кулису (см. Кривошипный механизм). Кулисно-коромысловые механизмы, получающиеся из предыдущих при ограничении угла поворота кривошипа, выполняют с качающейся и поступательно-движущейся кулисой, применяют для преобразования движения, а также в качестве т. н. синусных механизмов счётно-решающих машин. Кулисно-ползунные механизмы предназначаются для преобразования качательного движения в поступательное или наоборот, а также используются в качестве тангенсного механизма в счётно-решающих машинах. В машинах находят применение двухкулисные механизмы , обеспечивающие равенство угловых скоростей кулис при постоянном угле между ними. Это свойство используют, например, в муфтах, допускающих смещение осей соединяемых валов. Сложные многозвенные К. м. применяют для различных целей, например в системах регулирования наполнения цилиндров двигателей внутреннего сгорания, реверсивных механизмах паровых машин и др. 50. Смазочная система предназначена для подачи моторного масла к трущимся поверхностям деталей двигателя. Существует несколько различных методов смазки:1. Динамическая система смазки (масляный насос и т.д. 2. Пассивная система смазки (под действием внутренних сил и сил тяжести). 51. Смазочные материалы — твёрдые, пластичные, жидкие(моторные масла и т.д.) и газообразные вещества, используемые в узлах трения автомобильной техники, индустриальных машин и механизмов, а также в быту для снижения износа, вызванного трением. 52. Существующие способы упрочнения ходовых винтов станков объемной закалкой и закалкой ТВЧ не нашли широкого применения главным образом вследствие того, что они приводят к деформациям длинных деталей и усложняют технологию их изготовления. По этой причине большинство ходовых винтов изготовляют неупрочненными, а их износ имеет абразивный характер и достигает значительных размеров, что приводит к потере точности станка. Так, износ ходовых винтов токарно-винторезных станков 1А62, 1Д62М по среднему диаметру при двухсменной работе достигает 0 5 мм в год. 53. Деталь помещают в среду, богатую элементом, который диффундирует в металл. 1. Цементация - поверхностное диффузионное насыщение малоуглеродистой стали углеродом с целью повышения твёрдости, износоустойчивости. 2. Азотирование - это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. 3. Нитроцементация - процесс насыщения поверхности стали одновременно углеродом и азотом при 700—950 °C в газовой среде, состоящей из науглероживающего газа и аммиака 4. Цианирование - процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при температурах 820-950° C в расплаве цианида натрия или других солей с тем же анионом. 5. Диффузионное насыщение металлами - поверхностное насыщение стали алюминием, хромом, цинком , кремнием и другими элементами. Один из методов упрочнения материалов 1. Алитирование — (покрытие) поверхности стальных деталейалюминием для защиты от окисления при высоких температурах (700—900 °C и выше) и сопротивления атмосферной коррозии. Один из методов упрочнения машин и деталей. 2. Хромирование — диффузионное насыщение поверхности стальных изделий хромом, либо процесс осаждения на поверхность детали слоя хрома из электролита под действием электрического тока. 3. Никелирование — обработка поверхности изделий путем нанесения на них никелевого покрытия. Толщина наносимого покрытия обычно составляет от 1 до 50 мкм. 4. Силицирование — процесс химико-термической обработки, состоящий в высокотемпературном (950—1100 °C) насыщении поверхности стали кремнием. 5. Борирование — процесс химико-термической обработки, диффузионного насыщения поверхности металлов и сплавов бором при нагреве и выдержке в химически активной среде. Борирование приводит к упрочнению поверхности. 54. Гальваническое покрытие – это металлическая пленка толщиной от долей микрона до десятых долей миллиметра, наносимые на поверхность не металлических и металлических изделий методом гальваники для придания им твердости ,износостойкости, антикоррозийных, антифрикционных, декоративных свойств. Гальванические покрытия:1)защитные – цинковые, КАДИЕВЫЕ, СВИНЦОВЫЕ, ОЛОВЯННЫЕ, НИКЕЛЕВЫЕ,ЗАЩИТНЫЕ ПЛЁНКИ.2)защитно-декоративные: медные с отделкой, никелевые, хромовые ,кобальтовые, серебряные, золотые, родиевые.3)покрытия для повышения сопротивления мех. Износу: хромовые, железные, никелевые.4) покрытия для восстановления размеров детали: железные, медные 55. Упрочняющая обработка пластическим деформированием Упрочняющую обработку поверхностным пластическим деформированием (ППД) применяют в основном для повышения усталостной прочности деталей. Упрочнение достигается путем снижения вредного влияния концентраторов напряжений за счет создания в поверхностных слоях детали внутренних напряжений сжатия и измельчения кристаллической структуры. 56. Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины. Измерение бывают: 1. Прямые 2. Косвеные Приборы для измерения: Штанген циркуль, метрометр и т.д. |