ПОЗНАВАТЕЛЬНОЕ Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Метод ітерації уточнення наближених значень коренів рівнянь: ідея, збіжність, оцінка наближення, блок-схема. Зведення рівняння до вигляду, зручного для ітерацій. Наближені величини. Абсолютна та відносна похибки. Гранична абсолютна і відносна похибки. Значущі цифри. Вірні значущі цифри. Звязок відносної похибки наближеного числа з кількістю вірних цифр цього числа. Наближеною величиною наз величина, яка мало відрізняється від точної і заміняє її в обчисленні. Похибкою наближеного числа а наз величина а=а-А (або А-а). Якщо а>А, то кажуть, що а є наближенням до А з надлишком, якщо а<А, то це наближення з недостачею. Абсолютною похибкою називається величина =| a|=|a-A|. Граничною абсолютною похибкою наближеного числа а наз величина а така, що |а-А| а. Відносною похибкою наближеного числа наз величина . Граничною відносною похибкою наближеного числа а наз величина а , така що а . ; а = ; а=|a| а. Якщо а>0: А=а(1 а). Значущою цифрою числа наз будь-яка її відмінна від нуля цифра і нуль у двох випадках: 1. коли він міститься між значущими цифрами; 2. коли він є представником збереженого десяткового розряду. Вірною значущою цифрою наз така цифра, для якої абсолютна похибка заданого числа не перевищує половини одиниць розряду, в якому міститься ця цифра (вірність у вузькому сенсі). Вірною значущою цифрою наз така цифра, для якої абсолютна похибка заданого числа не перевищує одиниці розряду, в якому міститься ця цифра (вірність у широкому сенсі). Всі значущі цифри, які містяться лівіше від вірної цифри теж будуть вірними. Теорема: Якщо число а зображене у вигляді: , де має n вірних цифр, то відносна похибка цього цисла задовольняє нерівність: . Доведення: ; . Загальна формула для похибки. Похибки алг. суми, добутку, частки. Похибки обч. значень основних елем. ф-цій. Метод пол. поділу уточнення наближених значень коренів рівнянь: алгоритм, збіжність, оцінка наближення, блок-схема. Маємо функцію . Припустимо, що кожна змінна має похибку . В якості похибки функції використовуємо приріст: . Припускаємо, що f-диференційована функція і скористаємося формулою: ; ; ; ; . Теорема про суму:Якщо всі хі і=1,…, n одного знака, то відносна похибка функції u не перевищує відносної похибки найменш точного доданка. Доведення: ( ),і=1,…, n. Припустимо, що нам відомі . Знайдемо : ; ; . Добуток: ; ; . Нехай , вважаємо, що кожен із співмножників хі має m вірних цифр у вузькому сенсі. , де -старша значуща цифра числа . .Добуток буде мати (m-2) вірні цифри. Якщо співмножники беруться з різною кількістю вірних цифр, то в якості m беруть кількість вірних цифр у найменш точному співмножнику. Частка: ; ; ; ; ; ; - в широкому і вузькому сенсі. Похибки елементарних функцій:маємо функцію y=f(x) і похибки . ;  Табличка похибок: Метод половинного поділу:Маємо відрізок [a;b]. f(a)*f(b)<0. Ділимо цей відрізок пополам. і . Провіряємо умову , якщо вона виконується, то тоді це є розв’язком рів-ня.Якщо ні, то розглядаємо дві половини відрізка і вибираємо ту, де функція приймає на кінцях різні значення ; <0. Знову провіряємо умову . Якщо виконується, то зупиняємося, якщо ні, то знову беремо ту половину відрізка, де ф-ція приймає значення різних знаків. І продовжуємо так далі. Приходимо до відрізка . В результаті маємо систему вкладених сегментів: . Збіжність: . Тобто дві послідовності збігаються до кореня рівняння. Оцінка: ; ; .Якщо будемо мати -точність наближення , то потрібно взяти таке n, щоб < , то . Блок-схема:  3. Метод хорд уточнення наближених значень коренів рівнянь: алгоритм, збіжність, оцінка наближення, блок-схема. Нехай корені рів-ня f(x)=0 відокремлені на в-ку [a;b], причому ф-я f(x) двічі диф-на на інтер [a;b] і f’(x), f’’(x) 0 і зберігають свій знак на цьому пром-ку. Суть методу хорд полягає в тому, що криву f(x)заміняємо хордою, яка з’єднує кінці відрізка, а наближеним значенням кореня будемо вважати точку перетину хорди з віссю Ох. Розглянемо І тип кривої. Графік функції f(x) проходить через точки А(x0, f(x0)), В(b,f(b)). З’єднаємо точки а і b хордою АВ. Рівняння прямої, що проходить через 2 точки . Підставимо у рівняння значення х=x1, y=0, одержимо  Для знаходження координати точки x2 будемо мати таке рівняння: . Продовжуючи побудову хорд, одержимо . Розглянемо другий випадок, коли А(x0, f(x0)), В(b,f(b)). . Підставимо у рівняння значення х=x1, y=0, одержимо , Для знаходження координати точки x2 будемо мати таке рівняння:  Продовжуючи побудову хорд, одержимо . Збіжність: (хn)-монотонно зростаюча . Перейдемо до границі: . . . Оскільки , то . Оцінюємо наближення: .  Оскільки , то додамо у ліву частину формули: . Застосуємо формулу Лагранжа для скінченних приростів: . . . , . . Якщо ми кладемо, що , то при виконанні нерівності < , < , , , , < , < . Блок-схема: 
4. Метод дотичних (Ньютона) уточнення наближених значень коренів рівнянь: алгоритм, збіжність, оцінка наближення, блок-схема. Модифікація методу Ньютона. Нехай ф-я f(x) двічі неперервно диф-на на в-ку [a;b], при чому f’(x), f’’(x) 0 і зберігає свій знак на цьому відрізку. Нехай корінь відокремлений на в-ку [a;b]. Суть методу дотичних полягає в тому, що криву у= f(x) заміняємо дотичною до цієї кривої, проведеної у кінцях відрізка. Точка перетину дотичної з віссю Ох вважається наближенням до розв’язку рівняння. Проведемо дослідження методом дотичних на І типі кривої. Дотичну будемо проводити до кривої у= f(x) на тому кінці відрізка [a;b], де значення функції f(x) і 2-ї похідної f’’(x) співпадають за знаком. Для цього запишемо рівняння дотичної проведеної до графіка функції в точці (x0,f(x0)). у- f(x0)= f’(x0)(х-x0). Позначимо координати першого наближення у=0, х=x1. - f(x0)= f`(x0)(x1- x0); . ; аналогічно продовжуємо так само: ; … … … . Збіжність: , перейдемо до границі: , =0, , , , . , застосувавши формулу Лагранжа, отримаємо: , , , . Оцінка наближення: Скористаємось формулою Тейлора: , , , , . Якщо < , то < . Блок-схема:  Метод ітерації уточнення наближених значень коренів рівнянь: ідея, збіжність, оцінка наближення, блок-схема. Зведення рівняння до вигляду, зручного для ітерацій. Нехай задано рів-ня f(x)=0 при чому корінь цього р-ня відокремлений на в-ку [a;b], а ф-я f(x) неперервна на цьому відрізку. Замінимо дане рів-ня рів-ням , при чому функція неперервно диференційована на в-ку [a;b]. Суть методу ітерації полягає в тому, що ми вибираємо на відрізку [a;b] початкове наближення х0. наступні наближення будемо обчислювати за рекурентною формулою хn= (xn-1), n=1,2,… Збіжність: припускаємо, що . Перейдемо до границі: , . Т: Нехай функція визначена, диференційовна і неперервна на відрізку [a;b]; ; | |≤q<1. Тоді послідовні наближення, що одержуються за методом ітерацій збігаються до кореня рівняння незалежно від вибору початкового наближення. Д: , , , . n=1 ; n=2 ; … … … n=k  Покажемо, що різниця , . Отже, . Оцінка наближення: Оцінимо зверху різницю ? Для цього візьмемо таку різницю: , ; , підставивши n, отримаємо: , , … , , … ,  , , . Блок-схема:  Зведення рівняння: Завдання полягає в тому, щоб звести рівняння f(x)до вигляду . 1). . В нашому випадку , , . Щоб виконувалась рівність, візьмемо . Тоді , , <1, якщо . 2). >1, , , <1,  Геометричний зміст методу ітерацій Побудуємо графіки функцій у=х і у= . Розглянемо 4 випадки: І <1 II >1 III <-1 IV >-1 I Вибираємо точку х0. хn=φ(xn-1) і отримаємо В1, опускаємо перпендикуляр і отримаємо х1. А0(х0,х0), В1(х1, φ(x1)), А1(х1,х1), В2(х2, φ(x2)), А2(х2,х2), В3(х3, φ(x3)).(Графік 1) ІІ Вибираємо х0, проведем вісь паралельну Оу, потім паралельну Ох – утвориться точка В1. кореня немає, іде розбіжність. (Графік 2) ІІІ Вибираємо точку х0 ближче до ξ, піднімаємо перпендикуляр вверх – утвориться точка А0. Горизонтально проводимо пряму – утвориться точка В1, якій відповідає х1. х0, х1, ..., хn віддаляється від кореня – немає збіжності. (Графік 3) IV Вибираємо х0, піднімаємо перпендикуляр до перетину з прямою у=х. Це буде точка А0. Проводимо паралельну осі Ох і утворилась точка В1, опускаємо перпендикуляр – одержуємо х1. х0, х1, ... послідовно наближуються до кореня. (Графік 4)  |