МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Оси и плоскости тела человека Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Тема 6.1. Термическая обработка





Классификация ТО. Технология термической обработки. Отжиг: диффузионный и рекристаллизационный, полный, неполный, изотермический, сфероидизирующий. Нормализация. Влияние нормализации на структуру и механические свойства. Закалка. Виды и назначение отпуска.

Термической обработкой называется совокупность операций нагрева, выдержки и охлаждения твердых металлических сплавов с целью получения заданных свойств за счет изменения внутреннего строения и структуры. Термическая обработка используется либо в ка­честве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств детали.


Отжиг - это первичная операция термической обработки, при которой стали нагревают до определенных температур, выдерживают при этих температурах и затем медленно охлаждают вместе с печью.

В зависимости от температуры нагрева и назначения различают следующие виды отжига: полный, неполный, отжиг на зернистый перлит, изотермический, диффузионный и т. д.

Полныйотжиг осуществляется главным образом после горячей механической обработки и литья углеродистых и легированных сталей. Основной целью полного отжига кованых и литых деталей является измельчение зерна, смягчение металла для улучшения его обработки режущим инструментом и устранение вну­ренних напряжений. Это достигается нагревом, не превышающим 20-40°С верхней критической точки АСз,и медленным охлаждением.

Время выдержки при температуре отжига обычно складывается из времени, необходимого для полного прогрева всей массы деталей, и времени, нужного для окончания структурных превращений. После отжига сталь медленно охлаждают вместе с печью. Детали, изготовленные из углеродистой стали, охлаждают со скоростью 180-200°С в час, из низколегированных сталей - со скоростью 90-100°С в час, из высоколегированных - со скоростью примерно 50°С в час. Высоколегированные стали целесообразнее подвергать изотермическому отжигу.

Неполный отжиг. Если до отжига структура стали была удовлетворительная, но сталь обладает повышенной твердостью и в деталях имеются внутренние напряжения, то целесообразнее применять неполный отжиг. Детали при таком отжиге нагревают при температуре, немного превышающей точку ACl. Неполный отжиг изменяет структуру перлита, однако, структура феррита может оставаться неизменной. Внутренние напряжения снимаются полностью, и сталь получает пониженную твердость и хорошо обрабатывается механически.

Отжиг на зернистый перлит (сфероидизация). Заэвтектоидные высокоуглеродистые инструментальные стали со структурой пластинчатого перлита имеют плохую обрабатываемость режущим инструментом. Поэтому заэвтектоидные углеродистые и легированные стали подвергают отжигу только на зернистый перлит.

Получение зернистого перлита достигается специальным видом отжига, близким по своему режиму к неполному отжигу. Сталь нагревают немного выше AClс последующим охлаждением сначала до 700°С, затем до 550-600°С и далее на воздухе. Особенно важным для получения зернистого перлита является точное соблюдение температурного режима, так как при очень медленном охлаждении зернистый перлит получается с крупными зернами, а часто с отдельными пластинками перлита, а при более быстром охлаждении образуется мелкозернистый (точечный) перлит. Поэтому для получения зернистого перлита целесообразно применять циклический или маятниковый отжиг. При таком отжиге сталь нагревают до 760-780°С, после небольшой выдержки охлаждают имеете с печью до 680 - 700°С и затем снова повторяют весьцикл несколько раз.

Изотермический отжиг. Этот вид отжига заключаетсяв нагреве стали на 30-50°С выше точки Ас3, охлаждении дотемпературы несколько ниже точки Аr1,изотермической выдержке при этой температуре для полного превращения аустенита и последующем охлаждении на воздухе. Изотермический отжиг позволяет сокращать продолжительность циклов, используемых при обычном отжиге высоколегированной стали, с 15-30 до 4-7 час. и дает однородную структуру. Такой отжиг особенно необходим для высокохромистых сталей с устойчивым аустенитом.

Диффузионный отжиг (гомогенизация). Он производится для устранения или уменьшения химической неоднородности, получаемой при затвердевании стальных слитков (дендритная ликвация). Выравнивание химического состава стали и уничтожение дендритной ликвации осуществляется путем диффузии (перемещения) атомов примесей из мест с высокой концентрацией в места с низкой концентрацией. Для обеспечения хороших условий диффузии атомов диффузионный отжиг стали, проводят при высоких температурах (1100-1200°С), с длительной выдержкой (от 10 до 15 час.) и медленным охлаждением.

Рекристаллизационный (разупрочняющий)отжиг. При деформации стали вхолодном состоянии происходит ее наклеп. Зерна феррита и перлита вытягиваются по направлению деформации. Вследствие этого наклепа искажается кристаллическая решетка, сталь становится более жесткой, твердой и пластичность ее резко падает. Для восстановления пластичности и устранения наклепа деформированную сталь (обычно листовую) подвергают рекристаллизационному отжигу. Отжиг обычно производят при температуре 650-680°С, в результате чего вместо старых вытянутых зерен в исходной структуре образуются новые, равноосные зерна и сталь становится мягкой и вязкой.

Нормализация.Термическую операцию, при которой сталь нагревают до температуры 30-50°С выше верхних критических точек АСзи Аст,выдерживают при этой температуре и затем охлаждают на спокойном воздухе, называют нормализацией.

Нормализацией устраняют внутренние напряжения и наклеп, повышают механические свойства и подготовляют структуру стали для окончательной термической обработки.

При нормализации превращение аустенита происходит с большей степенью переохлаждения, чем при отжиге, поэтому перлит имеет более тонкую структуру. В результате нормализации сталь получает нормальную, однородную мелкозернистую структуру. Дефектыи брак при отжиге и нормализации.В процессе отжига и нормализации может возникать неисправимый и исправимый брак (дефекты). Наиболее распространенными видами дефектов и брака являются: окисление, обезуглероживание, перегрев и пережог стали.

Закалка. Это процесс термической обработки, при которой сталь нагревают до оптимальной температуры, выдерживают при этой температуре и затем быстро охлаждают с целью получения неравновесной структуры. В результате закалки повышается прочность и твердость и понижается пластичность конструкционных и инструментальных сталей и сплавов. Качество закалки зависит от температуры и скорости нагрева, времени выдержки и охлаждения. Основными параметрами закалки являются температура нагрева и скорость охлаждения.

Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической АC1, выдержке при этой температуре и последующем медленном или быстром охлаждении. В зависимости от температуры нагрева различают низкий, средний и высокий отпуск.
Низкий отпуск достигается нагревом до температуры 150—250° С, выдержкой при этой температуре и последующим охлаждением на воздухе. Средний отпуск производят при 300—500° С. Твердость стали заметно понижается, вязкость увеличивается.
Высокий отпуск происходит при 500—600° С, его основное назначение — получить наибольшую вязкость при доста­точных пределах прочности и упругости стали.

Тема 6.2. Химико-термическая и термо-механическая обработка.

Цементация. Азотирование. Нитроцементация. Ионное азотирование. Высокотемпературная и низкотемпературная термомеханическая обработка.

 

Цементация –химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры900…950 oС.

Цементации подвергают стали с низким содержанием углерода (до 0,25 %).

Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.

Азотирование –химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы. При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции:2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

Нитроцементация– газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака.

Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки.

Нитроцементация– газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака.

Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки.

Сущность ионного азотирования заключается в том, что в герметичном контейнере создается разреженная азотосодержащая атмосфера. С этой целью можно использовать чистый азот, аммиак или смесь азота и водорода. Внутри контейнера размещают азотируемые детали, которые подключают к отрицательному полюсу источника постоянного напряжения. Они играют роль катода. Анодом служит стенка контейнера. Между катодом и анодом включается высокое напряжение (500—1000 В). В этих условиях происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу — катоду. Электрическое сопротивление газовой среды вблизи катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода, на расстоянии нескольких миллиметров от него. Благодаря этому создается очень высокая напряженность электрического поля вблизи катода.

Ионы азота, входя в эту зону высокой напряженности, разгоняются до больших скоростей и, соударяясь с деталью (катодом), внедряются в ее поверхность. При этом высокая кинетическая энергия, которую имели ионы азота, переходит в тепловую. В результате деталь за короткое время, примерно 15— 30 мин, разогревается до температуры 470—580°С, при которой происходит диффузия азота в глубь металла, т. е. идет процесс азотирования.

Термомеханическая обработка (ТМО) заключается в сочетании пластической деформации сталей в нагретом состоянии с последующей закалкой и низким отпуском.

1) Высокотемпературная ТМО (ВТМО), осуществляется в процессе деформации металла при температуре выше Ас3 (степень деформации 20-30%) с последующей закалкой и низким отпуском при температуре 200-3000С

2) Низкотемпературная ТМО (НТМО)– это нагрев сталей выше точки Ас3 с последующей деформацией при температуре 400-6000С (выше точки Мн, но ниже температуры рекристаллизации) с последующей закалкой и низким отпуском. Степень деформации составляет 75-95%.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.